↓ Skip to main content

Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization

Overview of attention for article published in Discover Nano, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization
Published in
Discover Nano, February 2018
DOI 10.1186/s11671-018-2459-8
Pubmed ID
Authors

C. Tudisco, M. T. Cambria, A. E. Giuffrida, F. Sinatra, C. D. Anfuso, G. Lupo, N. Caporarello, A. Falanga, S. Galdiero, V. Oliveri, C. Satriano, G. G. Condorelli

Abstract

A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Researcher 5 14%
Student > Doctoral Student 4 11%
Student > Bachelor 3 8%
Student > Master 3 8%
Other 5 14%
Unknown 10 27%
Readers by discipline Count As %
Chemistry 10 27%
Pharmacology, Toxicology and Pharmaceutical Science 4 11%
Biochemistry, Genetics and Molecular Biology 3 8%
Neuroscience 2 5%
Agricultural and Biological Sciences 1 3%
Other 4 11%
Unknown 13 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Discover Nano
#525
of 1,149 outputs
Outputs of similar age
#269,525
of 446,427 outputs
Outputs of similar age from Discover Nano
#12
of 20 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,149 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,427 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.