↓ Skip to main content

Plant Programmed Cell Death

Overview of attention for book
Cover of 'Plant Programmed Cell Death'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Programmed Cell Death in Plants: An Overview
  3. Altmetric Badge
    Chapter 2 Investigation of Morphological Features of Autophagy During Plant Programmed Cell Death
  4. Altmetric Badge
    Chapter 3 Markers of Developmentally Regulated Programmed Cell Death and Their Analysis in Cereal Seeds
  5. Altmetric Badge
    Chapter 4 Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis
  6. Altmetric Badge
    Chapter 5 Immunity-Associated Programmed Cell Death as a Tool for the Identification of Genes Essential for Plant Innate Immunity
  7. Altmetric Badge
    Chapter 6 Analysis of Mitochondrial Markers of Programmed Cell Death
  8. Altmetric Badge
    Chapter 7 Studying Retrograde Signaling in Plants
  9. Altmetric Badge
    Chapter 8 ROS and Cell Death in Tomato Roots Infected by Meloidogyne Incognita
  10. Altmetric Badge
    Chapter 9 Detection of Reactive Oxygen and Nitrogen Species (ROS/RNS) During Hypersensitive Cell Death
  11. Altmetric Badge
    Chapter 10 DNA Diffusion Assay Applied to Plant Cells
  12. Altmetric Badge
    Chapter 11 Analysis of Reactive Carbonyl Species Generated Under Oxidative Stress
  13. Altmetric Badge
    Chapter 12 In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB)
  14. Altmetric Badge
    Chapter 13 Measurement of Cyclic GMP During Plant Hypersensitive Disease Resistance Response
  15. Altmetric Badge
    Chapter 14 Detection of MAPK3/6 Phosphorylation During Hypersensitive Response (HR)-Associated Programmed Cell Death in Plants
  16. Altmetric Badge
    Chapter 15 Measurement of the Caspase-1-Like Activity of Vacuolar Processing Enzyme in Plants
  17. Altmetric Badge
    Chapter 16 Plant Cell Cultures as Model Systems to Study Programmed Cell Death
Attention for Chapter 12: In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB)
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Vivo Analysis of Calcium Levels and Glutathione Redox Status in Arabidopsis Epidermal Leaf Cells Infected with the Hypersensitive Response-Inducing Bacteria Pseudomonas syringae pv. tomato AvrB (PstAvrB)
Chapter number 12
Book title
Plant Programmed Cell Death
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7668-3_12
Pubmed ID
Book ISBNs
978-1-4939-7667-6, 978-1-4939-7668-3
Authors

Fabrizio Gandolfo Doccula, Laura Luoni, Smrutisanjita Behera, Maria Cristina Bonza, Alex Costa

Abstract

Plants react to the attack of pathogen microorganisms by mounting appropriate and efficient downstream defense responses often involving a form of localized cell death called hypersensitive response (HR).Here we describe an innovative and noninvasive protocol based on in vivo bioimaging technique coupled with utilization of genetically encoded fluorescent sensors that allows to monitor and analyze intracellular calcium (Ca2+) dynamics and changes of the glutathione redox status taking place in plant organs during plant interaction with the HR-inducing bacteria Pseudomonas syringae (PstAvrB).

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 24%
Other 3 14%
Researcher 3 14%
Student > Bachelor 2 10%
Student > Master 2 10%
Other 1 5%
Unknown 5 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 43%
Agricultural and Biological Sciences 7 33%
Medicine and Dentistry 1 5%
Unknown 4 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2018.
All research outputs
#12,745,879
of 23,016,919 outputs
Outputs from Methods in molecular biology
#3,158
of 13,165 outputs
Outputs of similar age
#198,849
of 442,344 outputs
Outputs of similar age from Methods in molecular biology
#253
of 1,498 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,165 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,344 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.