↓ Skip to main content

Plant Chromatin Dynamics

Overview of attention for book
Cover of 'Plant Chromatin Dynamics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Profiling Developmentally and Environmentally Controlled Chromatin Reprogramming
  3. Altmetric Badge
    Chapter 2 Profiling DNA Methylation Using Bisulfite Sequencing (BS-Seq)
  4. Altmetric Badge
    Chapter 3 Bisulfite Sequencing Using Small DNA Amounts
  5. Altmetric Badge
    Chapter 4 Identification of Differentially Methylated Regions in the Genome of Arabidopsis thaliana
  6. Altmetric Badge
    Chapter 5 A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis
  7. Altmetric Badge
    Chapter 6 Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP)
  8. Altmetric Badge
    Chapter 7 A Method to Identify Nucleolus-Associated Chromatin Domains (NADs)
  9. Altmetric Badge
    Chapter 8 Cell Type-Specific Profiling of Chromatin Modifications and Associated Proteins
  10. Altmetric Badge
    Chapter 9 Mapping of Histone Modifications in Plants by Tandem Mass Spectrometry
  11. Altmetric Badge
    Chapter 10 Histone H1 Purification and Post-Translational Modification Profiling by High–Resolution Mass Spectrometry
  12. Altmetric Badge
    Chapter 11 Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis
  13. Altmetric Badge
    Chapter 12 Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq
  14. Altmetric Badge
    Chapter 13 Unraveling the Complex Epigenetic Mechanisms that Regulate Gene Activity
  15. Altmetric Badge
    Chapter 14 Technical Review: A Hitchhiker’s Guide to Chromosome Conformation Capture
  16. Altmetric Badge
    Chapter 15 3C in Maize and Arabidopsis
  17. Altmetric Badge
    Chapter 16 Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics
  18. Altmetric Badge
    Chapter 17 De Novo Identification of sRNA Loci and Non-coding RNAs by High-Throughput Sequencing
  19. Altmetric Badge
    Chapter 18 Identification of In Planta Protein–Protein Interactions Using IP-MS
  20. Altmetric Badge
    Chapter 19 RNA Immunoprecipitation Protocol to Identify Protein–RNA Interactions in Arabidopsis thaliana
  21. Altmetric Badge
    Chapter 20 In Vitro Assays to Measure Histone Methyltransferase Activity Using Different Chromatin Substrates
  22. Altmetric Badge
    Chapter 21 Identification of Parent-of-Origin-Dependent QTLs Using Bulk-Segregant Sequencing (Bulk-Seq)
  23. Altmetric Badge
    Chapter 22 QTLepi Mapping in Arabidopsis thaliana
  24. Altmetric Badge
    Chapter 23 A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin
  25. Altmetric Badge
    Chapter 24 Localization of Chromatin Marks in Arabidopsis Early Embryos
  26. Altmetric Badge
    Chapter 25 Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining
  27. Altmetric Badge
    Chapter 26 Measuring Dynamics of Histone Proteins by Photobleaching in Arabidopsis Roots
  28. Altmetric Badge
    Chapter 27 Fluorescence In Situ Hybridization (FISH) and Immunolabeling on 3D Preserved Nuclei
  29. Altmetric Badge
    Chapter 28 High-Affinity LNA–DNA Mixmer Probes for Detection of Chromosome-Specific Polymorphisms of 5S rDNA Repeats in Arabidopsis thaliana
  30. Altmetric Badge
    Chapter 29 A Method for Testing Random Spatial Models on Nuclear Object Distributions
  31. Altmetric Badge
    Chapter 30 Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes
  32. Altmetric Badge
    Chapter 31 Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations
  33. Altmetric Badge
    Chapter 32 Automated 3D Gene Position Analysis Using a Customized Imaris Plugin: XTFISHInsideNucleus
  34. Altmetric Badge
    Chapter 33 Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ
  35. Altmetric Badge
    Chapter 34 Transmission Electron Microscopy Imaging to Analyze Chromatin Density Distribution at the Nanoscale Level
  36. Altmetric Badge
    Chapter 35 Erratum to: Bisulfite Sequencing Using Small DNA Amounts
Attention for Chapter 6: Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP)
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP)
Chapter number 6
Book title
Plant Chromatin Dynamics
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7318-7_6
Pubmed ID
Book ISBNs
978-1-4939-7317-0, 978-1-4939-7318-7
Authors

Bénédicte Desvoyes, Joana Sequeira-Mendes, Zaida Vergara, Sofia Madeira, Crisanto Gutierrez, Desvoyes, Bénédicte, Sequeira-Mendes, Joana, Vergara, Zaida, Madeira, Sofia, Gutierrez, Crisanto

Abstract

Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Master 3 21%
Professor 2 14%
Student > Doctoral Student 2 14%
Student > Ph. D. Student 2 14%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 43%
Biochemistry, Genetics and Molecular Biology 4 29%
Psychology 1 7%
Neuroscience 1 7%
Engineering 1 7%
Other 0 0%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2023.
All research outputs
#14,034,020
of 24,985,232 outputs
Outputs from Methods in molecular biology
#3,483
of 14,071 outputs
Outputs of similar age
#212,860
of 454,478 outputs
Outputs of similar age from Methods in molecular biology
#277
of 1,484 outputs
Altmetric has tracked 24,985,232 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,071 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,478 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 1,484 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.