↓ Skip to main content

Glial Amino Acid Transporters

Overview of attention for book
Cover of 'Glial Amino Acid Transporters'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Manganese Control of Glutamate Transporters’ Gene Expression
  3. Altmetric Badge
    Chapter 2 Glycine Transporters in Glia Cells: Structural Studies
  4. Altmetric Badge
    Chapter 3 Taurine Homeostasis and Volume Control
  5. Altmetric Badge
    Chapter 4 Glycine Transporters and Its Coupling with NMDA Receptors
  6. Altmetric Badge
    Chapter 5 Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters
  7. Altmetric Badge
    Chapter 6 EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis
  8. Altmetric Badge
    Chapter 7 Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke
  9. Altmetric Badge
    Chapter 8 Glutamine/Glutamate Transporters in Glial Cells: Much More Than Participants of a Metabolic Shuttle
  10. Altmetric Badge
    Chapter 9 Glial Glutamate Transporters as Signaling Molecules
  11. Altmetric Badge
    Chapter 10 Regulation of Glutamate Transporter Expression in Glial Cells
  12. Altmetric Badge
    Chapter 11 Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology
  13. Altmetric Badge
    Chapter 12 Molecular Characteristics, Regulation, and Function of Monocarboxylate Transporters
  14. Altmetric Badge
    Chapter 13 Glial Excitatory Amino Acid Transporters and Glucose Incorporation
  15. Altmetric Badge
    Chapter 14 Astrocytic GABA Transporters: Pharmacological Properties and Targets for Antiepileptic Drugs
  16. Altmetric Badge
    Chapter 15 Glutamate Transporters in the Blood-Brain Barrier
  17. Altmetric Badge
    Chapter 16 Development of Non-GAT1-Selective Inhibitors: Challenges and Achievements
Attention for Chapter 11: Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology
Chapter number 11
Book title
Glial Amino Acid Transporters
Published in
Advances in neurobiology, January 2017
DOI 10.1007/978-3-319-55769-4_11
Pubmed ID
Book ISBNs
978-3-31-955767-0, 978-3-31-955769-4
Authors

Georgi Gegelashvili, Ole Jannik Bjerrum, Gegelashvili, Georgi, Bjerrum, Ole Jannik

Abstract

The vast majority of peripheral neurons sensing noxious stimuli and conducting pain signals to the dorsal horn of the spinal cord utilize glutamate as a chemical transmitter of excitation. High-affinity glutamate transporter subtypes GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, and EAAT4, differentially expressed on sensory neurons, postsynaptic spinal interneurons, and neighboring glia, ensure fine modulation of glutamate neurotransmission in the spinal cord. The glutamate transport system seems to play important roles in molecular mechanisms underlying chronic pain and analgesia. Downregulation of glutamate transporters (GluTs) often precedes or occurs simultaneously with development of hypersensitivity to thermal or tactile stimuli in various models of chronic pain. Moreover, antisense knockdown or pharmacological inhibition of these membrane proteins can induce or aggravate pain. In contrast, upregulation of GluTs by positive pharmacological modulators or by viral gene transfer to the spinal cord can reverse the development of such pathological hypersensitivity. Furthermore, some multi-target drugs displaying analgesic properties (e.g., tricyclic antidepressant amitriptyline, riluzole, anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic pain treatment. However, design and development of new analgesics based on the modulation of glutamate uptake will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of this transport system in the spinal cord.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 26%
Student > Bachelor 3 11%
Other 1 4%
Student > Doctoral Student 1 4%
Professor 1 4%
Other 3 11%
Unknown 11 41%
Readers by discipline Count As %
Neuroscience 6 22%
Medicine and Dentistry 5 19%
Environmental Science 1 4%
Nursing and Health Professions 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 2 7%
Unknown 11 41%