↓ Skip to main content

mTOR

Overview of attention for book
Cover of 'mTOR'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life.
  3. Altmetric Badge
    Chapter 2 Biochemical and Pharmacological Inhibition of mTOR by Rapamycin and an ATP-Competitive mTOR Inhibitor.
  4. Altmetric Badge
    Chapter 3 Evaluation of the Nutrient-Sensing mTOR Pathway.
  5. Altmetric Badge
    Chapter 4 mTOR Activity Under Hypoxia.
  6. Altmetric Badge
    Chapter 5 Isolation of the mTOR Complexes by Affinity Purification.
  7. Altmetric Badge
    Chapter 6 An In Vitro Assay for the Kinase Activity of mTOR Complex 2
  8. Altmetric Badge
    Chapter 7 Overexpression or Downregulation of mTOR in Mammalian Cells.
  9. Altmetric Badge
    Chapter 8 Detection of Cytoplasmic and Nuclear Functions of mTOR by Fractionation.
  10. Altmetric Badge
    Chapter 9 Evaluation of rapamycin-induced cell death.
  11. Altmetric Badge
    Chapter 10 Evaluation of mTOR-Regulated mRNA Translation
  12. Altmetric Badge
    Chapter 11 A Genome-wide RNAi Screen for Polypeptides that Alter rpS6 Phosphorylation.
  13. Altmetric Badge
    Chapter 12 Immunohistochemical Analysis of mTOR Activity in Tissues.
  14. Altmetric Badge
    Chapter 13 Assessing Cell Size and Cell Cycle Regulation in Cells with Altered TOR Activity.
  15. Altmetric Badge
    Chapter 14 Quantitative Visualization of Autophagy Induction by mTOR Inhibitors.
  16. Altmetric Badge
    Chapter 15 The In Vivo Evaluation of Active-Site TOR Inhibitors in Models of BCR-ABL+ Leukemia.
  17. Altmetric Badge
    Chapter 16 Inducible raptor and rictor Knockout Mouse Embryonic Fibroblasts.
  18. Altmetric Badge
    Chapter 17 Expanding Human T Regulatory Cells with the mTOR-Inhibitor Rapamycin.
  19. Altmetric Badge
    Chapter 18 Rapamycin-induced enhancement of vaccine efficacy in mice.
  20. Altmetric Badge
    Chapter 19 Utilizing a Retroviral RNAi System to Investigate In Vivo mTOR Functions in T Cells.
  21. Altmetric Badge
    Chapter 20 Exploring Functional In Vivo Consequences of the Selective Genetic Ablation of mTOR Signaling in T Helper Lymphocytes.
  22. Altmetric Badge
    Chapter 21 Evaluating the Therapeutic Potential of mTOR Inhibitors Using Mouse Genetics.
  23. Altmetric Badge
    Chapter 22 Inhibition of PI3K-Akt-mTOR Signaling in Glioblastoma by mTORC1/2 Inhibitors.
  24. Altmetric Badge
    Chapter 23 Assessing the Function of mTOR in Human Embryonic Stem Cells.
  25. Altmetric Badge
    Chapter 24 Video-EEG Monitoring Methods for Characterizing Rodent Models of Tuberous Sclerosis and Epilepsy.
  26. Altmetric Badge
    Chapter 25 A Genetic Model to Dissect the Role of Tsc-mTORC1 in Neuronal Cultures.
  27. Altmetric Badge
    Chapter 26 Tissue-specific ablation of tsc1 in pancreatic Beta-cells.
  28. Altmetric Badge
    Chapter 27 A Mouse Model of Diet-Induced Obesity and Insulin Resistance
  29. Altmetric Badge
    Chapter 28 Rapamycin as immunosuppressant in murine transplantation model.
  30. Altmetric Badge
    Chapter 29 Development of ATP-Competitive mTOR Inhibitors.
Attention for Chapter 27: A Mouse Model of Diet-Induced Obesity and Insulin Resistance
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users
wikipedia
1 Wikipedia page

Readers on

mendeley
779 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Mouse Model of Diet-Induced Obesity and Insulin Resistance
Chapter number 27
Book title
mTOR
Published in
Methods in molecular biology, September 2011
DOI 10.1007/978-1-61779-430-8_27
Pubmed ID
Book ISBNs
978-1-61779-429-2, 978-1-61779-430-8
Authors

Chao-Yung Wang, James K. Liao

Editors

Thomas Weichhart

Abstract

Obesity is reaching pandemic proportions in Western society. It has resulted in increasing health care burden and decreasing life expectancy. Obesity is a complex, chronic disease, involving decades of pathophysiological changes and adaptation. Therefore, it is difficult ascertain the exact mechanisms for this long-term process in humans. To circumvent some of these issues, several surrogate models are available, including murine genetic loss-of-function mutations, transgenic gain-of-function mutations, polygenic models, and different environmental exposure models. The mouse model of diet-induced obesity has become one of the most important tools for understanding the interplay of high-fat Western diets and the development of obesity. The diet-induced obesity model closely mimics the increasingly availability of the high-fat/high-density foods in modern society over the past two decades, which are main contributors to the obesity trend in human. This model has lead to many discoveries of the important signalings in obesity, such as Akt and mTOR. The chapter describes protocols for diet induced-obesity model in mice and protocols for measuring insulin resistance and sensitivity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 779 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 3 <1%
France 1 <1%
United Kingdom 1 <1%
South Africa 1 <1%
China 1 <1%
United States 1 <1%
Unknown 771 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 155 20%
Student > Bachelor 113 15%
Student > Master 108 14%
Researcher 80 10%
Student > Doctoral Student 45 6%
Other 97 12%
Unknown 181 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 183 23%
Agricultural and Biological Sciences 131 17%
Medicine and Dentistry 93 12%
Pharmacology, Toxicology and Pharmaceutical Science 31 4%
Neuroscience 24 3%
Other 99 13%
Unknown 218 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2023.
All research outputs
#2,276,650
of 24,302,917 outputs
Outputs from Methods in molecular biology
#367
of 13,671 outputs
Outputs of similar age
#11,264
of 135,130 outputs
Outputs of similar age from Methods in molecular biology
#3
of 54 outputs
Altmetric has tracked 24,302,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,671 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 135,130 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.