↓ Skip to main content

RNA Nanostructures

Overview of attention for book
Cover of 'RNA Nanostructures'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A New Method to Predict Ion Effects in RNA Folding
  3. Altmetric Badge
    Chapter 2 Computational Generation of RNA Nanorings
  4. Altmetric Badge
    Chapter 3 Protocols for Molecular Dynamics Simulations of RNA Nanostructures
  5. Altmetric Badge
    Chapter 4 Rolling Circle Transcription for the Self-Assembly of Multimeric RNAi Structures and Its Applications in Nanomedicine
  6. Altmetric Badge
    Chapter 5 Computational Prediction of the Immunomodulatory Potential of RNA Sequences
  7. Altmetric Badge
    Chapter 6 Cotranscriptional Production of Chemically Modified RNA Nanoparticles
  8. Altmetric Badge
    Chapter 7 Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures
  9. Altmetric Badge
    Chapter 8 Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition
  10. Altmetric Badge
    Chapter 9 Design and Crystallography of Self-Assembling RNA Nanostructures
  11. Altmetric Badge
    Chapter 10 X-Aptamer Selection and Validation
  12. Altmetric Badge
    Chapter 11 Design and Preparation of Aptamer–siRNA Chimeras (AsiCs) for Targeted Cancer Therapy
  13. Altmetric Badge
    Chapter 12 Cellular Delivery of siRNAs Using Bolaamphiphiles
  14. Altmetric Badge
    Chapter 13 Preparation and Optimization of Lipid-Like Nanoparticles for mRNA Delivery
  15. Altmetric Badge
    Chapter 14 Chitosan Nanoparticles for miRNA Delivery
  16. Altmetric Badge
    Chapter 15 Synthesis of PLGA–Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG–Lipid Nanoparticles for siRNA Delivery
  17. Altmetric Badge
    Chapter 16 Oxime Ether Lipids as Transfection Agents: Assembly and Complexation with siRNA
  18. Altmetric Badge
    Chapter 17 Polycationic Probe-Guided Nanopore Single-Molecule Counter for Selective miRNA Detection
  19. Altmetric Badge
    Chapter 18 Intracellular Reassociation of RNA–DNA Hybrids that Activates RNAi in HIV-Infected Cells
  20. Altmetric Badge
    Chapter 19 Construction and In Vivo Testing of Prokaryotic Riboregulators
  21. Altmetric Badge
    Chapter 20 Preparation of a Conditional RNA Switch
  22. Altmetric Badge
    Chapter 21 Rational Engineering of a Modular Group I Ribozyme to Control Its Activity by Self-Dimerization
  23. Altmetric Badge
    Chapter 22 CRISPR-Cas RNA Scaffolds for Transcriptional Programming in Yeast
  24. Altmetric Badge
    Chapter 23 Using Planar Phi29 pRNA Three-Way Junction to Control Size and Shape of RNA Nanoparticles for Biodistribution Profiling in Mice
Attention for Chapter 7: Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures
Altmetric Badge

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures
Chapter number 7
Book title
RNA Nanostructures
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7138-1_7
Pubmed ID
Book ISBNs
978-1-4939-7137-4, 978-1-4939-7138-1
Authors

Aleksandra P. Dabkowska, Agnes Michanek, Luc Jaeger, Arkadiusz Chworos, Tommy Nylander, Emma Sparr

Abstract

RNA architectonics offers the possibility to design and assemble RNA into specific shapes, such as nanoscale 3D solids or nanogrids. Combining the minute size of these programmable shapes with precise positioning on a surface further enhances their potential as building blocks in nanotechnology and nanomedicine. Here we describe a bottom-up approach to direct the arrangement of nucleic acid nanostructures by using a supported fluid lipid bilayer as a surface scaffold. The strong attractive electrostatic interactions between RNA polyanions and cationic lipids promote RNA adsorption and self-assembly. Protocol steps for the characterization of assembled RNA complexes via several complementary methods (QCM-D, ellipsometry, confocal fluorescence microscopy, AFM) are also provided. Due to their tunable nature, lipid bilayers can be used to organize RNA laterally on the micrometer scale and thus facilitate the building of more complex 3D structures. The bilayer-based approach can be extended to other programmable RNA or DNA objects to construct intricate structures, such as 2D grids or 3D cages, with high precision.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 50%
Researcher 2 25%
Professor 1 13%
Unknown 1 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 25%
Chemistry 2 25%
Unknown 4 50%