↓ Skip to main content

Plant Gravitropism

Overview of attention for book
Cover of 'Plant Gravitropism'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Immunohistochemistry relative to gravity: a simple method to retain information about gravity for immunolocalization and histochemistry.
  3. Altmetric Badge
    Chapter 2 A flat embedding method to orient thin biological samples for sectioning.
  4. Altmetric Badge
    Chapter 3 Quantification of root gravitropic response using a constant stimulus feedback system.
  5. Altmetric Badge
    Chapter 4 Analysis of gravitropic setpoint angle control in Arabidopsis.
  6. Altmetric Badge
    Chapter 5 Imaging of Dynamic Ion Signaling During Root Gravitropism
  7. Altmetric Badge
    Chapter 6 Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism.
  8. Altmetric Badge
    Chapter 7 Auxin carrier and signaling dynamics during gravitropic root growth.
  9. Altmetric Badge
    Chapter 8 Imaging and quantitative methods for studying cytoskeletal rearrangements during root development and gravitropism.
  10. Altmetric Badge
    Chapter 9 Methods for RNA profiling of gravi-responding plant tissues.
  11. Altmetric Badge
    Chapter 10 Proteomic Approaches and Their Application to Plant Gravitropism
  12. Altmetric Badge
    Chapter 11 Assays for root hydrotropism and response to water stress.
  13. Altmetric Badge
    Chapter 12 Evaluating mechano-transduction and touch responses in plant roots.
  14. Altmetric Badge
    Chapter 13 Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes
  15. Altmetric Badge
    Chapter 14 Flowering shoots of ornamental crops as a model to study cellular and molecular aspects of plant gravitropism.
  16. Altmetric Badge
    Chapter 15 Studying Molecular Changes During Gravity Perception and Response in a Single Cell
  17. Altmetric Badge
    Chapter 16 Live cell and immuno-labeling techniques to study gravitational effects on single plant cells.
  18. Altmetric Badge
    Chapter 17 Use of High Gradient Magnetic Fields to Evaluate Gravity Perception and Response Mechanisms in Plants and Algae
  19. Altmetric Badge
    Chapter 18 Use of Microgravity Simulators for Plant Biological Studies
  20. Altmetric Badge
    Chapter 19 Conducting Plant Experiments in Space
  21. Altmetric Badge
    Chapter 20 Spaceflight Exploration in Plant Gravitational Biology
  22. Altmetric Badge
    Chapter 21 Hypergravity Experiments to Evaluate Gravity Resistance Mechanisms in Plants
Attention for Chapter 10: Proteomic Approaches and Their Application to Plant Gravitropism
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Proteomic Approaches and Their Application to Plant Gravitropism
Chapter number 10
Book title
Plant Gravitropism
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2697-8_10
Pubmed ID
Book ISBNs
978-1-4939-2696-1, 978-1-4939-2697-8
Authors

Proma Basu, Darron R. Luesse, Sarah E. Wyatt, Basu, Proma, Luesse, Darron R., Wyatt, Sarah E.

Abstract

Proteomics is a powerful technique that allows researchers a window into how an organism responds to a mutation, a specific environment, or at a distinct point during development by quantifying relative protein abundance and posttranslational modifications. Here, we describe methods for the proteomic analysis of Arabidopsis thaliana tissue. Extraction protocols are provided for isolation of soluble, plasma membrane, and tonoplast proteins. In addition, basic analysis and quality metrics for MS/MS data are discussed. The protocols outlined have the potential to unlock new avenues of research that are not possible through basic genetics or transcriptomic approaches. By combining proteomic information with known gene regulatory patterns, researchers can gain a complete picture of how molecular pathways, such as those required for gravitropism, are initiated, regulated, and terminated.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 20%
Librarian 1 20%
Student > Ph. D. Student 1 20%
Unknown 2 40%
Readers by discipline Count As %
Unspecified 1 20%
Biochemistry, Genetics and Molecular Biology 1 20%
Unknown 3 60%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2017.
All research outputs
#7,534,266
of 22,988,380 outputs
Outputs from Methods in molecular biology
#2,335
of 13,150 outputs
Outputs of similar age
#106,422
of 354,118 outputs
Outputs of similar age from Methods in molecular biology
#169
of 998 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,150 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,118 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 998 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.