↓ Skip to main content

Efficient piezoelectric ZnO nanogenerators based on Au-coated silica sphere array electrode

Overview of attention for article published in Discover Nano, December 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Efficient piezoelectric ZnO nanogenerators based on Au-coated silica sphere array electrode
Published in
Discover Nano, December 2013
DOI 10.1186/1556-276x-8-511
Pubmed ID
Authors

Yeong Hwan Ko, Goli Nagaraju, Jae Su Yu

Abstract

We reported ZnO nanorod-based piezoelectric nanogenerators (NGs) with Au-coated silica sphere array as an efficient top electrode. This electrode can readily bend the ZnO nanorods due to its enhanced surface roughness, thus resulting in more increased and regular piezoelectric charge output. Under a low external pushing force of 0.3 kgf, the output current and voltage were increased by approximately 2.01 and 1.51 times, respectively, in comparison with a conventional Au top electrode without silica spheres. Also, the effect of Au-coated silica spheres on the bending radius of ZnO nanorods was theoretically investigated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 23%
Student > Master 5 23%
Student > Ph. D. Student 4 18%
Student > Bachelor 3 14%
Lecturer > Senior Lecturer 1 5%
Other 3 14%
Unknown 1 5%
Readers by discipline Count As %
Materials Science 8 36%
Engineering 5 23%
Physics and Astronomy 3 14%
Chemistry 1 5%
Energy 1 5%
Other 0 0%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2013.
All research outputs
#16,580,157
of 25,374,647 outputs
Outputs from Discover Nano
#518
of 1,146 outputs
Outputs of similar age
#195,965
of 320,227 outputs
Outputs of similar age from Discover Nano
#13
of 22 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,227 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.