↓ Skip to main content

Meiosis

Overview of attention for book
Cover of 'Meiosis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae
  3. Altmetric Badge
    Chapter 2 Quantitative Genome-Wide Measurements of Meiotic DNA Double-Strand Breaks and Protein Binding in S. pombe
  4. Altmetric Badge
    Chapter 3 Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast
  5. Altmetric Badge
    Chapter 4 Ribosome Profiling for the Analysis of Translation During Yeast Meiosis
  6. Altmetric Badge
    Chapter 5 Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation
  7. Altmetric Badge
    Chapter 6 Fluorescent Protein as a Tool for Investigating Meiotic Recombination in Neurospora
  8. Altmetric Badge
    Chapter 7 High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae
  9. Altmetric Badge
    Chapter 8 Analysis of Meiotic Chromosome-Associated Protein Dynamics Using Conditional Expression in Budding Yeast
  10. Altmetric Badge
    Chapter 9 In Vivo Imaging of Budding Yeast Meiosis
  11. Altmetric Badge
    Chapter 10 Sequential Immunofluorescent Light Microscopy and Electron Microscopy of Recombination Nodules During Meiotic Prophase I
  12. Altmetric Badge
    Chapter 11 Flow Cytometry for the Isolation and Characterization of Rodent Meiocytes
  13. Altmetric Badge
    Chapter 12 Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH
  14. Altmetric Badge
    Chapter 13 Imaging Chromosome Separation in Mouse Oocytes by Responsive 3D Confocal Timelapse Microscopy
  15. Altmetric Badge
    Chapter 14 Live Imaging of Meiosis I in Late-Stage Drosophila melanogaster Oocytes
  16. Altmetric Badge
    Chapter 15 Microscopy Methods for Analysis of Spindle Dynamics in Meiotic Drosophila Spermatocytes
  17. Altmetric Badge
    Chapter 16 Drosophila Male Meiosis
  18. Altmetric Badge
    Chapter 17 Analysis of Chromatin Dynamics During Drosophila Spermatogenesis
  19. Altmetric Badge
    Chapter 18 Quantitative Modeling and Automated Analysis of Meiotic Recombination
  20. Altmetric Badge
    Chapter 19 A Computational Approach to Study Gene Expression Networks
Attention for Chapter 18: Quantitative Modeling and Automated Analysis of Meiotic Recombination
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitative Modeling and Automated Analysis of Meiotic Recombination
Chapter number 18
Book title
Meiosis
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6340-9_18
Pubmed ID
Book ISBNs
978-1-4939-6338-6, 978-1-4939-6340-9
Authors

White, Martin A., Wang, Shunxin, Zhang, Liangran, Kleckner, Nancy, Martin A. White, Shunxin Wang, Liangran Zhang, Nancy Kleckner

Abstract

Many morphological features, in both physical and biological systems, exhibit spatial patterns that are specifically characterized by a tendency to occur with even spacing (in one, two, or three dimensions). The positions of crossover (CO) recombination events along meiotic chromosomes provide an interesting biological example of such an effect. In general, mechanisms that explain such patterns may (a) be mechanically based, (b) occur by a reaction-diffusion mechanism in which macroscopic mechanical effects are irrelevant, or (c) involve a combination of both types of effects. We have proposed that meiotic CO patterns arise by a mechanical mechanism, have developed mathematical expressions for such a process based on a particular physical system with analogous properties (the so-called beam-film model), and have shown that the beam-film model can very accurately explain experimental CO patterns as a function of the values of specific defined parameters. Importantly, the mathematical expressions of the beam-film model can apply quite generally to any mechanism, whether it involves mechanical components or not, as long as its logic and component features correspond to those of the beam-film system. Furthermore, via its various parameters, the beam-film model discretizes the patterning process into specific components. Thus, the model can be used to explore the theoretically predicted effects of various types of changes in the patterning process. Such predictions can expand detailed understanding of the bases for various biological effects. We present here a new MATLAB program that implements the mathematical expressions of the beam-film model with increased robustness and accessibility as compared to programs presented previously. As in previous versions, the presented program permits both (1) simulation of predicted CO positions along chromosomes of a test population and (2) easy analysis of CO positions, both for experimental data sets and for data sets resulting from simulations. The goal of the current presentation is to make these approaches more readily accessible to a wider audience of researchers. Also, the program is easily modified, and we encourage interested users to make changes to suit their specific needs. A link to the program is available on the Kleckner laboratory website: http://projects.iq.harvard.edu/kleckner_lab .

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 29%
Student > Ph. D. Student 6 21%
Student > Master 3 11%
Student > Doctoral Student 2 7%
Student > Bachelor 1 4%
Other 5 18%
Unknown 3 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 50%
Biochemistry, Genetics and Molecular Biology 9 32%
Computer Science 1 4%
Physics and Astronomy 1 4%
Energy 1 4%
Other 0 0%
Unknown 2 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 March 2017.
All research outputs
#15,452,475
of 22,962,258 outputs
Outputs from Methods in molecular biology
#5,372
of 13,136 outputs
Outputs of similar age
#193,771
of 308,511 outputs
Outputs of similar age from Methods in molecular biology
#109
of 303 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,136 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,511 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 303 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.