↓ Skip to main content

Modeling Peptide-Protein Interactions

Overview of attention for book
Cover of 'Modeling Peptide-Protein Interactions'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Usage of ACCLUSTER for Peptide Binding Site Prediction
  3. Altmetric Badge
    Chapter 2 Detection of Peptide-Binding Sites on Protein Surfaces Using the Peptimap Server
  4. Altmetric Badge
    Chapter 3 Peptide Suboptimal Conformation Sampling for the Prediction of Protein-Peptide Interactions
  5. Altmetric Badge
    Chapter 4 Template-Based Prediction of Protein-Peptide Interactions by Using GalaxyPepDock
  6. Altmetric Badge
    Chapter 5 Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions
  7. Altmetric Badge
    Chapter 6 Highly Flexible Protein-Peptide Docking Using CABS-Dock
  8. Altmetric Badge
    Chapter 7 AnchorDock for Blind Flexible Docking of Peptides to Proteins
  9. Altmetric Badge
    Chapter 8 Information-Driven, Ensemble Flexible Peptide Docking Using HADDOCK
  10. Altmetric Badge
    Chapter 9 Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind
  11. Altmetric Badge
    Chapter 10 Flexible Backbone Methods for Predicting and Designing Peptide Specificity
  12. Altmetric Badge
    Chapter 11 Simplifying the Design of Protein-Peptide Interaction Specificity with Sequence-Based Representations of Atomistic Models
  13. Altmetric Badge
    Chapter 12 Binding Specificity Profiles from Computational Peptide Screening
  14. Altmetric Badge
    Chapter 13 Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design
  15. Altmetric Badge
    Chapter 14 Investigating Protein–Peptide Interactions Using the Schrödinger Computational Suite
  16. Altmetric Badge
    Chapter 15 Identifying Loop-Mediated Protein–Protein Interactions Using LoopFinder
  17. Altmetric Badge
    Chapter 16 Protein-Peptide Interaction Design: PepCrawler and PinaColada
  18. Altmetric Badge
    Chapter 17 Modeling and Design of Peptidomimetics to Modulate Protein–Protein Interactions
Attention for Chapter 2: Detection of Peptide-Binding Sites on Protein Surfaces Using the Peptimap Server
Altmetric Badge

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Detection of Peptide-Binding Sites on Protein Surfaces Using the Peptimap Server
Chapter number 2
Book title
Modeling Peptide-Protein Interactions
Published in
Methods in molecular biology, February 2017
DOI 10.1007/978-1-4939-6798-8_2
Pubmed ID
Book ISBNs
978-1-4939-6796-4, 978-1-4939-6798-8
Authors

Tanggis Bohnuud, George Jones, Ora Schueler-Furman, Dima Kozakov

Editors

Ora Schueler-Furman, Nir London

Abstract

Peptide-mediated interactions are of primordial importance to the cell, and the structure of such interaction provides an important starting point for their further characterization. In many cases, the structure of the peptide-protein complex has not been solved by experiment, and modeling tools need to be applied to generate structural models of the interaction. PeptiMap is a protocol that identifies the peptide-binding site when only the structure of the receptor is known, but no information about where the peptide binds is available. This is achieved by mapping the surface for solvents to identify ligand-binding sites, similar in approach to ANCHORMAP in which amino acids are mapped. Peptimap is a free open access web-based server. It can be accessed at http://peptimap.cluspro.org .

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 20%
Professor 2 20%
Student > Doctoral Student 1 10%
Student > Ph. D. Student 1 10%
Researcher 1 10%
Other 1 10%
Unknown 2 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 40%
Computer Science 2 20%
Biochemistry, Genetics and Molecular Biology 1 10%
Engineering 1 10%
Unknown 2 20%