↓ Skip to main content

Targeting Lysine Demethylases in Cancer and Other Human Diseases

Overview of attention for book
Attention for Chapter 6: KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
KDM5 Lysine Demethylases in Pathogenesis, from Basic Science Discovery to the Clinic.
Chapter number 6
Book title
Targeting Lysine Demethylases in Cancer and Other Human Diseases
Published in
Advances in experimental medicine and biology, January 2023
DOI 10.1007/978-3-031-38176-8_6
Pubmed ID
Book ISBNs
978-3-03-138175-1, 978-3-03-138176-8
Authors

Zhang, Shang-Min, Cao, Jian, Yan, Qin

Abstract

The histone lysine demethylase 5 (KDM5) family proteins are Fe2+ and α-ketoglutarate-dependent dioxygenases, with jumonji C (JmjC) domain as their catalytic core and several plant homeodomains (PHDs) to bind different histone methylation marks. These enzymes are capable of demethylating tri-, di- and mono-methylated lysine 4 in histone H3 (H3K4me3/2/1), the key epigenetic marks for active chromatin. Thus, this H3K4 demethylase family plays critical roles in cell fate determination during development as well as malignant transformation. KDM5 demethylases have both oncogenic and tumor suppressive functions in a cancer type-dependent manner. In solid tumors, KDM5A/B are generally oncogenic, whereas KDM5C/D have tumor suppressive roles. Their involvement in de-differentiation, cancer metastasis, drug resistance, and tumor immunoevasion indicated that KDM5 family proteins are promising drug targets for cancer therapy. Significant efforts from both academia and industry have led to the development of potent and selective KDM5 inhibitors for preclinical experiments and phase I clinical trials. However, a better understanding of the roles of KDM5 demethylases in different physiological and pathological conditions is critical for further developing KDM5 modulators for clinical applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 100%
Readers by discipline Count As %
Medicine and Dentistry 1 100%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2023.
All research outputs
#15,309,642
of 25,066,230 outputs
Outputs from Advances in experimental medicine and biology
#2,159
of 5,248 outputs
Outputs of similar age
#209,716
of 472,419 outputs
Outputs of similar age from Advances in experimental medicine and biology
#23
of 80 outputs
Altmetric has tracked 25,066,230 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,248 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 472,419 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.