↓ Skip to main content

Adhesion G Protein-coupled Receptors

Overview of attention for book
Cover of 'Adhesion G Protein-coupled Receptors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction: History of the Adhesion GPCR Field.
  3. Altmetric Badge
    Chapter 2 Classification, Nomenclature, and Structural Aspects of Adhesion GPCRs.
  4. Altmetric Badge
    Chapter 3 7TM Domain Structure of Adhesion GPCRs.
  5. Altmetric Badge
    Chapter 4 Understanding the Structural Basis of Adhesion GPCR Functions.
  6. Altmetric Badge
    Chapter 5 Control of Adhesion GPCR Function Through Proteolytic Processing.
  7. Altmetric Badge
    Chapter 6 Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs.
  8. Altmetric Badge
    Chapter 7 Versatile Signaling Activity of Adhesion GPCRs.
  9. Altmetric Badge
    Chapter 8 Adhesion G Protein-coupled Receptors
  10. Altmetric Badge
    Chapter 9 The Relevance of Genomic Signatures at Adhesion GPCR Loci in Humans.
  11. Altmetric Badge
    Chapter 10 Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors.
  12. Altmetric Badge
    Chapter 11 Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration.
  13. Altmetric Badge
    Chapter 12 Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination.
  14. Altmetric Badge
    Chapter 13 Control of Skeletal Muscle Cell Growth and Size Through Adhesion GPCRs.
  15. Altmetric Badge
    Chapter 14 Adhesion GPCR Function in Pulmonary Development and Disease.
  16. Altmetric Badge
    Chapter 15 Adhesion GPCRs as Modulators of Immune Cell Function.
  17. Altmetric Badge
    Chapter 16 Heart Development, Angiogenesis, and Blood-Brain Barrier Function Is Modulated by Adhesion GPCRs.
  18. Altmetric Badge
    Chapter 17 Adhesion GPCRs in Tumorigenesis.
  19. Altmetric Badge
    Chapter 18 Erratum to: 7TM Domain Structure of Adhesion GPCRs
Attention for Chapter 10: Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors.
Altmetric Badge

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors.
Chapter number 10
Book title
Adhesion G Protein-coupled Receptors
Published in
Handbook of experimental pharmacology, November 2016
DOI 10.1007/978-3-319-41523-9_10
Pubmed ID
Book ISBNs
978-3-31-941521-5, 978-3-31-941523-9
Authors

Nicole Scholz, Kelly R. Monk, Robert J. Kittel, Tobias Langenhan

Editors

Tobias Langenhan, Torsten Schöneberg

Abstract

Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 26%
Researcher 7 23%
Student > Master 4 13%
Student > Bachelor 3 10%
Professor 3 10%
Other 3 10%
Unknown 3 10%
Readers by discipline Count As %
Neuroscience 9 29%
Biochemistry, Genetics and Molecular Biology 6 19%
Agricultural and Biological Sciences 5 16%
Medicine and Dentistry 3 10%
Chemistry 2 6%
Other 1 3%
Unknown 5 16%