↓ Skip to main content

Cancer Gene Networks

Overview of attention for book
Cover of 'Cancer Gene Networks'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction: Cancer Gene Networks.
  3. Altmetric Badge
    Chapter 2 Emerging Methods in Chemoproteomics with Relevance to Drug Discovery.
  4. Altmetric Badge
    Chapter 3 ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities.
  5. Altmetric Badge
    Chapter 4 Experimental and Study Design Considerations for Uncovering Oncometabolites.
  6. Altmetric Badge
    Chapter 5 Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
  7. Altmetric Badge
    Chapter 6 Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
  8. Altmetric Badge
    Chapter 7 Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression.
  9. Altmetric Badge
    Chapter 8 Network-Oriented Approaches to Anticancer Drug Response.
  10. Altmetric Badge
    Chapter 9 CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
  11. Altmetric Badge
    Chapter 10 Complete Transcriptome RNA-Seq.
  12. Altmetric Badge
    Chapter 11 Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
  13. Altmetric Badge
    Chapter 12 Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
  14. Altmetric Badge
    Chapter 13 microRNA Target Prediction.
  15. Altmetric Badge
    Chapter 14 Evaluating the Delivery of Proteins to the Cytosol of Mammalian Cells.
  16. Altmetric Badge
    Chapter 15 Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.
  17. Altmetric Badge
    Chapter 16 Chemical Synthesis of Activity-Based Diubiquitin Probes.
  18. Altmetric Badge
    Chapter 17 Profiling the Dual Enzymatic Activities of the Serine/Threonine Kinase IRE1α.
Attention for Chapter 12: Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
Chapter number 12
Book title
Cancer Gene Networks
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6539-7_12
Pubmed ID
Book ISBNs
978-1-4939-6537-3, 978-1-4939-6539-7
Authors

Wenting Zhang, Woo Y. Lee, Jenny Zilberberg

Editors

Usha Kasid, Robert Clarke

Abstract

We described here the manufacturing and implementation of two prototype perfusion culture devices designed primarily for the cultivation of difficult-to-preserve primary patient-derived multiple myeloma cells (MMC). The first device consists of an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment. The second platform is a 96-well plate-modified perfusion culture device that can be utilized to reconstruct several tissue and tumor microenvironments utilizing both primary human and murine cells. This culture device was designed and fabricated specifically to: (1) enable the preservation of primary MMC for downstream use in biological studies and chemosensitivity analyses and, (2) provide a high-throughput format that is compatible with plate readers specifically seeing that this system is built on an industry standard 96-well tissue culture plate.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Researcher 4 21%
Student > Master 3 16%
Student > Bachelor 1 5%
Other 1 5%
Other 0 0%
Unknown 6 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 21%
Medicine and Dentistry 2 11%
Materials Science 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Psychology 1 5%
Other 3 16%
Unknown 6 32%