↓ Skip to main content

Non-coding RNAs in Colorectal Cancer

Overview of attention for book
Attention for Chapter 5: Non-coding RNAs Functioning in Colorectal Cancer Stem Cells.
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Non-coding RNAs Functioning in Colorectal Cancer Stem Cells.
Chapter number 5
Book title
Non-coding RNAs in Colorectal Cancer
Published in
Advances in experimental medicine and biology, August 2016
DOI 10.1007/978-3-319-42059-2_5
Pubmed ID
Book ISBNs
978-3-31-942057-8, 978-3-31-942059-2
Authors

Daniele Fanale, Nadia Barraco, Angela Listì, Viviana Bazan, Antonio Russo

Editors

Ondrej Slaby, George A. Calin

Abstract

In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main signaling pathways involved in the homeostasis of colorectal (CRC) stem cells are the Wnt, Notch, Sonic Hedgehog, and Bone Morfogenic Protein (BMP) pathways, which are mostly responsible for all the features that have been widely referred to stem cells. The same pathways have been identified in colorectal cancer stem cells (CRCSCs), conferring a more aggressive phenotype compared to non-stem CRC cells. Recently, several evidences suggested that non-coding RNAs (ncRNAs) may play a crucial role in the regulation of different biological mechanisms in CRC, by modulating the expression of critical stem cell transcription factors that have been found active in CSCs. In this chapter, we will discuss the involvement of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in stemness acquisition and maintenance by CRCSCs, through the regulation of pathways modulating the CSC phenotype and growth, carcinogenesis, differentiation, and epithelial to mesenchymal transition (EMT).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Student > Bachelor 3 14%
Student > Master 2 9%
Professor 2 9%
Other 1 5%
Other 1 5%
Unknown 8 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 27%
Medicine and Dentistry 4 18%
Nursing and Health Professions 2 9%
Immunology and Microbiology 1 5%
Agricultural and Biological Sciences 1 5%
Other 0 0%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 July 2017.
All research outputs
#20,341,859
of 22,888,307 outputs
Outputs from Advances in experimental medicine and biology
#3,972
of 4,952 outputs
Outputs of similar age
#293,970
of 336,879 outputs
Outputs of similar age from Advances in experimental medicine and biology
#62
of 81 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,952 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,879 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.