↓ Skip to main content

The Golgi Complex

Overview of attention for book
Cover of 'The Golgi Complex'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 4D Confocal Imaging of Yeast Organelles
  3. Altmetric Badge
    Chapter 2 Imaging the Polarized Sorting of Proteins from the Golgi Complex in Live Neurons
  4. Altmetric Badge
    Chapter 3 Imaging Golgi Outposts in Fixed and Living Neurons
  5. Altmetric Badge
    Chapter 4 Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor
  6. Altmetric Badge
    Chapter 5 STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells
  7. Altmetric Badge
    Chapter 6 Reconstitution of COPI Vesicle and Tubule Formation
  8. Altmetric Badge
    Chapter 7 Reconstitution of Phospholipase A2-Dependent Golgi Membrane Tubules
  9. Altmetric Badge
    Chapter 8 Proteomic Characterization of Golgi Membranes Enriched from Arabidopsis Suspension Cell Cultures
  10. Altmetric Badge
    Chapter 9 High-Content Analysis of the Golgi Complex by Correlative Screening Microscopy
  11. Altmetric Badge
    Chapter 10 Activity Detection of GalNAc Transferases by Protein-Based Fluorescence Sensors In Vivo
  12. Altmetric Badge
    Chapter 11 In Situ Proximity Ligation Assay (PLA) Analysis of Protein Complexes Formed Between Golgi-Resident, Glycosylation-Related Transporters and Transferases in Adherent Mammalian Cell Cultures
  13. Altmetric Badge
    Chapter 12 Creating Knockouts of Conserved Oligomeric Golgi Complex Subunits Using CRISPR-Mediated Gene Editing Paired with a Selection Strategy Based on Glycosylation Defects Associated with Impaired COG Complex Function
  14. Altmetric Badge
    Chapter 13 Reversible Controlled Aggregation of Golgi Resident Enzymes to Assess Their Transport/Dynamics Along the Secretory Pathway
  15. Altmetric Badge
    Chapter 14 Assays to Study the Fragmentation of the Golgi Complex During the G2–M Transition of the Cell Cycle
  16. Altmetric Badge
    Chapter 15 The Role of Lysophospholipid Acyltransferases in the Golgi Complex
  17. Altmetric Badge
    Chapter 16 Methods to Purify and Assay Secretory Pathway Kinases
Attention for Chapter 4: Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor
Chapter number 4
Book title
The Golgi Complex
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-6463-5_4
Pubmed ID
Book ISBNs
978-1-4939-6461-1, 978-1-4939-6463-5
Authors

Jon E. Paczkowski, J. Christopher Fromme, Paczkowski, Jon E, Fromme, J Christopher

Editors

William J. Brown

Abstract

Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 25%
Researcher 4 25%
Professor > Associate Professor 2 13%
Student > Ph. D. Student 2 13%
Unspecified 1 6%
Other 2 13%
Unknown 1 6%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 50%
Agricultural and Biological Sciences 4 25%
Unspecified 1 6%
Computer Science 1 6%
Chemistry 1 6%
Other 0 0%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2016.
All research outputs
#20,341,859
of 22,888,307 outputs
Outputs from Methods in molecular biology
#9,921
of 13,132 outputs
Outputs of similar age
#330,770
of 393,716 outputs
Outputs of similar age from Methods in molecular biology
#1,054
of 1,471 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,132 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,716 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.