↓ Skip to main content

Study on nanometric cutting of germanium by molecular dynamics simulation

Overview of attention for article published in Discover Nano, January 2013
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Study on nanometric cutting of germanium by molecular dynamics simulation
Published in
Discover Nano, January 2013
DOI 10.1186/1556-276x-8-13
Pubmed ID
Authors

Min Lai, Xiaodong Zhang, Fengzhou Fang, Yufang Wang, Min Feng, Wanhui Tian

Abstract

Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is almost independent of the machined crystal plane. The cutting resistance on (111) face is greater than that on (010) face due to anisotropy of germanium. During nanometric cutting, both phase transformation from diamond cubic structure to β-Sn phase and direct amorphization of germanium occur. The machined surface presents amorphous structure.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Researcher 6 19%
Student > Master 5 16%
Professor 3 9%
Student > Postgraduate 2 6%
Other 2 6%
Unknown 7 22%
Readers by discipline Count As %
Engineering 13 41%
Materials Science 5 16%
Physics and Astronomy 4 13%
Medicine and Dentistry 1 3%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 January 2013.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#258,501
of 289,083 outputs
Outputs of similar age from Discover Nano
#21
of 87 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,083 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.