↓ Skip to main content

The coupling between localized surface plasmons and excitons via Purcell effect

Overview of attention for article published in Discover Nano, December 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The coupling between localized surface plasmons and excitons via Purcell effect
Published in
Discover Nano, December 2012
DOI 10.1186/1556-276x-7-669
Pubmed ID
Authors

Feng Wang, Dongsheng Li, Deren Yang, Duanlin Que

Abstract

The coupling between localized surface plasmons (LSPs) within silver nanostructures and excitons in a silicon-rich silicon nitride (SiNx) matrix has been demonstrated via the Purcell effect. A simple model is employed for the estimation of the Purcell factor as well as the average position of excitons within a luminescence matrix. The estimated average position of the excitons is located at approximately 40 nm beneath the top surface of the SiNx films. The approaches for further improving the optoelectrical properties of the luminescence matrix are anticipated based on the model we adopted. The optimization of the thickness of the luminescence matrix as well as the size and shape of metal nanostructures may be the alternative approaches. Besides, the application of multilayers with the luminescence matrix inserted between barrier layers (we defined it as confined structures here) may be also an available choice. Our work may provide a deep comprehension on the coupling between LSPs and excitons, which is not limited to a certain luminescence material but with unconfined structures.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Student > Master 5 17%
Researcher 5 17%
Professor > Associate Professor 3 10%
Professor 2 7%
Other 5 17%
Unknown 3 10%
Readers by discipline Count As %
Engineering 10 33%
Physics and Astronomy 7 23%
Materials Science 5 17%
Computer Science 2 7%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 1 3%
Unknown 4 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2012.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#255,917
of 286,029 outputs
Outputs of similar age from Discover Nano
#17
of 101 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 286,029 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 101 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.