↓ Skip to main content

Online Determination of Graphene Lattice Orientation Through Lateral Forces

Overview of attention for article published in Discover Nano, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Online Determination of Graphene Lattice Orientation Through Lateral Forces
Published in
Discover Nano, August 2016
DOI 10.1186/s11671-016-1553-z
Pubmed ID
Authors

Yu Zhang, Fanhua Yu, Guangyong Li, Lianqing Liu, Guangjie Liu, Zhiyong Zhang, Yuechao Wang, Uchechukwu C. Wejinya, Ning Xi

Abstract

Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 33%
Other 2 13%
Student > Bachelor 1 7%
Professor 1 7%
Student > Master 1 7%
Other 0 0%
Unknown 5 33%
Readers by discipline Count As %
Physics and Astronomy 3 20%
Engineering 2 13%
Computer Science 1 7%
Chemical Engineering 1 7%
Materials Science 1 7%
Other 1 7%
Unknown 6 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2016.
All research outputs
#16,580,157
of 25,374,647 outputs
Outputs from Discover Nano
#518
of 1,146 outputs
Outputs of similar age
#240,363
of 381,643 outputs
Outputs of similar age from Discover Nano
#13
of 28 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 381,643 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.