↓ Skip to main content

Gap Junction Protocols

Overview of attention for book
Cover of 'Gap Junction Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction.
  3. Altmetric Badge
    Chapter 2 Gap Junction Protocols
  4. Altmetric Badge
    Chapter 3 Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis.
  5. Altmetric Badge
    Chapter 4 Immunohisto- and Cytochemistry Analysis of Connexins.
  6. Altmetric Badge
    Chapter 5 Small Interfering RNA-Mediated Connexin Gene Knockdown in Vascular Endothelial and Smooth Muscle Cells.
  7. Altmetric Badge
    Chapter 6 Generation and Use of Trophoblast Stem Cells and Uterine Myocytes to Study the Role of Connexins for Pregnancy and Labor.
  8. Altmetric Badge
    Chapter 7 Identification of Connexin43 Phosphorylation and S-Nitrosylation in Cultured Primary Vascular Cells.
  9. Altmetric Badge
    Chapter 8 Preparation of Gap Junctions in Membrane Microdomains for Immunoprecipitation and Mass Spectrometry Interactome Analysis.
  10. Altmetric Badge
    Chapter 9 Scrape Loading/Dye Transfer Assay.
  11. Altmetric Badge
    Chapter 10 Microinjection Technique for Assessment of Gap Junction Function.
  12. Altmetric Badge
    Chapter 11 Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling.
  13. Altmetric Badge
    Chapter 12 Using Fluorescence Recovery After Photobleaching to Study Gap Junctional Communication In Vitro.
  14. Altmetric Badge
    Chapter 13 Tracking Dynamic Gap Junctional Coupling in Live Cells by Local Photoactivation and Fluorescence Imaging.
  15. Altmetric Badge
    Chapter 14 Gap Junction Protocols
  16. Altmetric Badge
    Chapter 15 Calcium Wave Propagation Triggered by Local Mechanical Stimulation as a Method for Studying Gap Junctions and Hemichannels.
  17. Altmetric Badge
    Chapter 16 Establishment of the Dual Whole Cell Recording Patch Clamp Configuration for the Measurement of Gap Junction Conductance.
Attention for Chapter 11: Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling.
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling.
Chapter number 11
Book title
Gap Junction Protocols
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3664-9_11
Pubmed ID
Book ISBNs
978-1-4939-3662-5, 978-1-4939-3664-9
Authors

Elke Decrock, Marijke De Bock, Diego De Baere, Delphine Hoorelbeke, Nan Wang, Luc Leybaert

Editors

Mathieu Vinken, Scott R. Johnstone

Abstract

Intercellular communication occurring via gap junction channels is considered a key mechanism for synchronizing physiological functions of cells and for the maintenance of tissue homeostasis. Gap junction channels are protein channels that are situated between neighboring cells and that provide a direct, yet selective route for the passage of small hydrophilic biomolecules and ions. Here, an electroporation method is described to load a localized area within an adherent cell monolayer with a gap junction-permeable fluorescent reporter dye. The technique results in a rapid and efficient labeling of a small patch of cells within the cell culture, without affecting cellular viability. Dynamic and quantitative information on gap junctional communication can subsequently be extracted by tracing the intercellular movement of the dye via time-lapse microscopy.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Student > Master 3 18%
Professor 2 12%
Researcher 2 12%
Unspecified 1 6%
Other 0 0%
Unknown 5 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 29%
Biochemistry, Genetics and Molecular Biology 5 29%
Medicine and Dentistry 2 12%
Computer Science 1 6%
Unspecified 1 6%
Other 0 0%
Unknown 3 18%