↓ Skip to main content

In Silico Methods for Predicting Drug Toxicity

Overview of attention for book
Cover of 'In Silico Methods for Predicting Drug Toxicity'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 QSAR Methods.
  3. Altmetric Badge
    Chapter 2 In Silico 3D Modeling of Binding Activities.
  4. Altmetric Badge
    Chapter 3 Modeling Pharmacokinetics.
  5. Altmetric Badge
    Chapter 4 Modeling ADMET.
  6. Altmetric Badge
    Chapter 5 In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results.
  7. Altmetric Badge
    Chapter 6 In Silico Methods for Carcinogenicity Assessment.
  8. Altmetric Badge
    Chapter 7 VirtualToxLab: Exploring the Toxic Potential of Rejuvenating Substances Found in Traditional Medicines.
  9. Altmetric Badge
    Chapter 8 In Silico Model for Developmental Toxicity: How to Use QSAR Models and Interpret Their Results.
  10. Altmetric Badge
    Chapter 9 In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for Drugs.
  11. Altmetric Badge
    Chapter 10 In Silico Models for Acute Systemic Toxicity.
  12. Altmetric Badge
    Chapter 11 In Silico Models for Hepatotoxicity.
  13. Altmetric Badge
    Chapter 12 In Silico Models for Ecotoxicity of Pharmaceuticals.
  14. Altmetric Badge
    Chapter 13 Use of Read-Across Tools.
  15. Altmetric Badge
    Chapter 14 Adverse Outcome Pathways as Tools to Assess Drug-Induced Toxicity.
  16. Altmetric Badge
    Chapter 15 A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure.
  17. Altmetric Badge
    Chapter 16 In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
  18. Altmetric Badge
    Chapter 17 Taking Advantage of Databases.
  19. Altmetric Badge
    Chapter 18 QSAR Models at the US FDA/NCTR.
  20. Altmetric Badge
    Chapter 19 A Round Trip from Medicinal Chemistry to Predictive Toxicology.
  21. Altmetric Badge
    Chapter 20 The Use of In Silico Models Within a Large Pharmaceutical Company.
  22. Altmetric Badge
    Chapter 21 The Consultancy Activity on In Silico Models for Genotoxic Prediction of Pharmaceutical Impurities.
Attention for Chapter 12: In Silico Models for Ecotoxicity of Pharmaceuticals.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Silico Models for Ecotoxicity of Pharmaceuticals.
Chapter number 12
Book title
In Silico Methods for Predicting Drug Toxicity
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3609-0_12
Pubmed ID
Book ISBNs
978-1-4939-3607-6, 978-1-4939-3609-0
Authors

Kunal Roy, Supratik Kar

Editors

Emilio Benfenati

Abstract

Pharmaceuticals and their active metabolites are one of the significantly emerging environmental toxicants. The major routes of entry of pharmaceuticals into the environment are industries, hospitals, or direct disposal of unwanted or expired drugs made by the patient. The most important and distinct features of pharmaceuticals are that they are deliberately designed to have an explicit mode of action and designed to exert an effect on humans and other living systems. This distinctive feature makes pharmaceuticals and their metabolites different from other chemicals, and this necessitates the evaluation of the direct effects of pharmaceuticals in various environmental compartments as well as to living systems. In this background, the alarming situation of ecotoxicity of diverse pharmaceuticals have forced government and nongovernment regulatory authorities to recommend the application of in silico methods to provide quick information about the risk assessment and fate properties of pharmaceuticals as well as their ecological and indirect human health effects. This chapter aims to offer information regarding occurrence of pharmaceuticals in the environment, their persistence, environmental fate, and toxicity as well as application of in silico methods to provide information about the basic risk management and fate prediction of pharmaceuticals in the environment. Brief ideas about toxicity endpoints, available ecotoxicity databases, and expert systems employed for rapid toxicity predictions of ecotoxicity of pharmaceuticals are also discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Bulgaria 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 15%
Student > Ph. D. Student 5 13%
Student > Master 4 10%
Other 3 8%
Professor 2 5%
Other 3 8%
Unknown 16 41%
Readers by discipline Count As %
Chemistry 6 15%
Environmental Science 3 8%
Agricultural and Biological Sciences 3 8%
Engineering 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 7 18%
Unknown 16 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2020.
All research outputs
#14,267,420
of 22,879,161 outputs
Outputs from Methods in molecular biology
#4,195
of 13,132 outputs
Outputs of similar age
#206,097
of 393,703 outputs
Outputs of similar age from Methods in molecular biology
#417
of 1,471 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,132 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,703 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,471 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.