↓ Skip to main content

Reviews of Environmental Contamination and Toxicology Volume 241

Overview of attention for book
Attention for Chapter 6: Review of the Ecotoxicological Properties of the Methylenedianiline Substances
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Review of the Ecotoxicological Properties of the Methylenedianiline Substances
Chapter number 6
Book title
Reviews of Environmental Contamination and Toxicology Volume 241
Published in
Reviews of Environmental Contamination and Toxicology, June 2016
DOI 10.1007/398_2016_6
Pubmed ID
Book ISBNs
978-3-31-946944-7, 978-3-31-946945-4
Authors

Schupp, T, Allmendinger, H, Bossuyt, B T A, Hidding, B, Tury, B, West, R J, T. Schupp, H. Allmendinger, B. T. A. Bossuyt, B. Hidding, B. Tury, R. J. West

Abstract

Concerning chronic toxicity, D. magna is the most sensitive species tested against MDA aquatic exposures, with a 21 days-NOEC of 0.00525 mg/L. Exposure of daphnids takes place via the aquatic phase. Other species of the same phylum (Arthropoda) appear to be less sensitive albeit with exposures via soil or sediment, with a 28 days-NOEC of 562 mg/kg d. w. soil (F. candida) and 41.3 mg/kg d. w. sediment (Hyalella azteca), for reproductive and survival endpoints, respectively. Also for acute toxicity, D. magna is more sensitive than the other species, with an 48 h-EC50 that spreads over two orders of magnitude, ranging from 0.019 to 2.7 mg/L. Fish show a more uniform reaction to MDA, with 96 h-LC50 ranging from about 20 to 60 mg/L; chronic data for fish are not available. Acute toxicity data for algae and cyanobacteria are in the range of 1-10 mg/L; based on growth rate, the 72 h-NOECr or ErC10 of MDA to algae is 0.3-9.3 mg/L.For sediment organisms, the black worm L. variegatus shows the highest sensitivity against MDA with a NOEC between ≤3.75 mg/kg and 30 mg/kg d. w., followed by the amphipod H. azteca. The lower sensitivity of L. variegatus in the second study compared to the first study is obviously attributable to the different feeding regimes (semi-continuous feeding against pre-spiked sediment). One argument might be that semi-continuous feeding allows the organisms to avoid the contaminated food. However, a change from semi-continuous feeding to sediment pre-spiked with nettle powder (Urtica sp.) results in an earlier and much stronger increase in ammonia concentration in the system. This became apparent after both studies on the blackworm were finalized. The ammonia 96 h-EC50 for the blackworm is 0.69 mg/L at pH = 8.2, and the 96 h-EC10 at pH = 8.2 is 0.33 mg/L (Hickey and Vickers, Arch Environ Contam Toxicol 26:292-298, 1994). As a result, the lower NOEC and LOEC in the second study with L. variegatus are probably attributable to interference by ammonia.MDA binds irreversibly to soil and sediment which may explain the general, but not uniform lower sensitivity of soil and sediment organisms against aquatic organisms. However, species with intense soil or sediment contact (L. variegatus and E. fetida) show in general lower NOEC values than those organisms with less direct contact (3.75 and 11.2 mg/kg d. w., respectively). On the one hand it may be hypothesized that this intense contact to soil bound MDA is one reason for the higher sensitivity; on the other hand, metabolic capacity against MDA of the organisms tested is unknown at this point in time and might as well explain differences in species sensitivity. For plants there are only acute data available, and in respect to acute toxicity L. sativa is more sensitive to MDA than E. fetida.Limited aquatic data available so far do not indicate that the toxicity of pMDA is different to MDA. In addition, the limited set of data generated with the marine M. macrocopa (crustacean), N. fustulum (diatom) and V. fisheri (bacteria) do not indicate that sea water organisms are more sensitive to MDA than fresh water organisms.In mammals, MDA is unlikely to interact with the endocrine sexual system; interaction with the adrenergic system cannot be ruled out, and effects of MDA on the thyroid hormone system have been demonstrated. MDA inhibits the thyroid peroxidase which might contribute to the thyroid gland tumors observed in chronic studies with rats and mice. Some anti-androgenic activity in in vitro studies with yeast cell did not prevail in in vivo studies with rats and mice.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Unspecified 1 11%
Student > Ph. D. Student 1 11%
Student > Bachelor 1 11%
Student > Master 1 11%
Other 1 11%
Unknown 2 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 22%
Environmental Science 2 22%
Unspecified 1 11%
Biochemistry, Genetics and Molecular Biology 1 11%
Chemistry 1 11%
Other 0 0%
Unknown 2 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2016.
All research outputs
#21,500,020
of 24,003,070 outputs
Outputs from Reviews of Environmental Contamination and Toxicology
#163
of 186 outputs
Outputs of similar age
#313,382
of 357,651 outputs
Outputs of similar age from Reviews of Environmental Contamination and Toxicology
#3
of 5 outputs
Altmetric has tracked 24,003,070 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 186 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 357,651 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.