↓ Skip to main content

The Alkali Metal Ions: Their Role for Life

Overview of attention for book
Cover of 'The Alkali Metal Ions: Their Role for Life'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Bioinorganic Chemistry of the Alkali Metal Ions
  3. Altmetric Badge
    Chapter 2 The Alkali Metal Ions: Their Role for Life
  4. Altmetric Badge
    Chapter 3 The Alkali Metal Ions: Their Role for Life
  5. Altmetric Badge
    Chapter 4 Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies
  6. Altmetric Badge
    Chapter 5 Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution
  7. Altmetric Badge
    Chapter 6 Sodium and Potassium Interactions with Nucleic Acids
  8. Altmetric Badge
    Chapter 7 Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability
  9. Altmetric Badge
    Chapter 8 Sodium and Potassium Ions in Proteins and Enzyme Catalysis
  10. Altmetric Badge
    Chapter 9 Roles and Transport of Sodium and Potassium in Plants.
  11. Altmetric Badge
    Chapter 10 Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters
  12. Altmetric Badge
    Chapter 11 Sodium as Coupling Cation in Respiratory Energy Conversion
  13. Altmetric Badge
    Chapter 12 The Alkali Metal Ions: Their Role for Life
  14. Altmetric Badge
    Chapter 13 Proton-Potassium (H + /K + ) ATPases: Properties and Roles in Health and Diseases
  15. Altmetric Badge
    Chapter 14 Bioinspired Artificial Sodium and Potassium Ion Channels
  16. Altmetric Badge
    Chapter 15 The Alkali Metal Ions: Their Role for Life
  17. Altmetric Badge
    Chapter 16 Sodium and Potassium Relating to Parkinson’s Disease and Traumatic Brain Injury
Attention for Chapter 7: Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#13 of 135)
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
1 news outlet
wikipedia
5 Wikipedia pages

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
148 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability
Chapter number 7
Book title
The Alkali Metal Ions: Their Role for Life
Published in
Metal ions in life sciences, January 2016
DOI 10.1007/978-3-319-21756-7_7
Pubmed ID
Book ISBNs
978-3-31-921755-0, 978-3-31-921756-7
Authors

Eric Largy, Jean-Louis Mergny, Valérie Gabelica, Largy, Eric, Mergny, Jean-Louis, Gabelica, Valérie

Abstract

G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 148 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 148 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 20%
Student > Bachelor 19 13%
Researcher 17 11%
Student > Master 15 10%
Student > Doctoral Student 5 3%
Other 13 9%
Unknown 50 34%
Readers by discipline Count As %
Chemistry 35 24%
Biochemistry, Genetics and Molecular Biology 30 20%
Pharmacology, Toxicology and Pharmaceutical Science 8 5%
Physics and Astronomy 4 3%
Engineering 4 3%
Other 9 6%
Unknown 58 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 October 2023.
All research outputs
#2,811,929
of 23,504,694 outputs
Outputs from Metal ions in life sciences
#13
of 135 outputs
Outputs of similar age
#49,130
of 396,817 outputs
Outputs of similar age from Metal ions in life sciences
#2
of 28 outputs
Altmetric has tracked 23,504,694 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 135 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,817 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.