↓ Skip to main content

Functional Genomics in Medicago truncatula

Overview of attention for book
Cover of 'Functional Genomics in Medicago truncatula'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Grain and Forage Legumes: Nutritional Value and Agriculture Sustainability
  3. Altmetric Badge
    Chapter 2 Model Legumes: Functional Genomics Tools in Medicago truncatula
  4. Altmetric Badge
    Chapter 3 The Medicago truncatula Genome: Genomic Data Availability
  5. Altmetric Badge
    Chapter 4 Physical Mutagenesis in Medicago truncatula Using Fast Neutron Bombardment (FNB) for Symbiosis and Developmental Biology Studies
  6. Altmetric Badge
    Chapter 5 Targeting Induced Local Lesions IN Genomes (TILLING) in Medicago truncatula
  7. Altmetric Badge
    Chapter 6 T-DNA Insertional Mutagenesis and Activation Tagging in Medicago truncatula
  8. Altmetric Badge
    Chapter 7 Tnt1 Insertional Mutagenesis in Medicago truncatula
  9. Altmetric Badge
    Chapter 8 Transient Posttranscriptional Gene Silencing in Medicago truncatula: Virus-Induced Gene Silencing (VIGS)
  10. Altmetric Badge
    Chapter 9 Stable Inactivation of MicroRNAs in Medicago truncatula Roots
  11. Altmetric Badge
    Chapter 10 Non-isotopic RNA In Situ Hybridization for Functional Analyses in Medicago truncatula
  12. Altmetric Badge
    Chapter 11 In Situ Hybridization Method for Localization of mRNA Molecules in Medicago Tissue Sections
  13. Altmetric Badge
    Chapter 12 Editing the Medicago truncatula Genome: Targeted Mutagenesis Using the CRISPR-Cas9 Reagent
  14. Altmetric Badge
    Chapter 13 Functional Genomics and Seed Development in Medicago truncatula: An Overview
  15. Altmetric Badge
    Chapter 14 Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview
  16. Altmetric Badge
    Chapter 15 Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics
  17. Altmetric Badge
    Chapter 16 The Multiple Faces of the Medicago-Sinorhizobium Symbiosis
  18. Altmetric Badge
    Chapter 17 Functional Genomics and Flowering Time in Medicago truncatula: An Overview
  19. Altmetric Badge
    Chapter 18 Functional Genomics and Genetic Control of Flower and Fruit Development in Medicago truncatula: An Overview
  20. Altmetric Badge
    Chapter 19 Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula
  21. Altmetric Badge
    Chapter 20 Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview
Attention for Chapter 15: Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics
Chapter number 15
Book title
Functional Genomics in Medicago truncatula
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-8633-0_15
Pubmed ID
Book ISBNs
978-1-4939-8632-3, 978-1-4939-8633-0
Authors

Hélène Proust, Caroline Hartmann, Martin Crespi, Christine Lelandais-Brière, Proust, Hélène, Hartmann, Caroline, Crespi, Martin, Lelandais-Brière, Christine

Abstract

This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 33%
Researcher 2 22%
Professor 1 11%
Student > Master 1 11%
Student > Doctoral Student 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 56%
Biochemistry, Genetics and Molecular Biology 1 11%
Computer Science 1 11%
Physics and Astronomy 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 March 2019.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Methods in molecular biology
#9,977
of 13,208 outputs
Outputs of similar age
#378,510
of 442,670 outputs
Outputs of similar age from Methods in molecular biology
#1,194
of 1,499 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,208 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,670 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.