↓ Skip to main content

Computational Toxicology

Overview of attention for book
Cover of 'Computational Toxicology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach
  3. Altmetric Badge
    Chapter 2 The OECD QSAR Toolbox Starts Its Second Decade
  4. Altmetric Badge
    Chapter 3 QSAR: What Else?
  5. Altmetric Badge
    Chapter 4 (Q)SARs as Adaptations to REACH Information Requirements
  6. Altmetric Badge
    Chapter 5 Machine Learning Methods in Computational Toxicology
  7. Altmetric Badge
    Chapter 6 Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling
  8. Altmetric Badge
    Chapter 7 Molecular Similarity in Computational Toxicology
  9. Altmetric Badge
    Chapter 8 Molecular Docking for Predictive Toxicology
  10. Altmetric Badge
    Chapter 9 Criteria and Application on the Use of Nontesting Methods within a Weight of Evidence Strategy
  11. Altmetric Badge
    Chapter 10 Characterization and Management of Uncertainties in Toxicological Risk Assessment: Examples from the Opinions of the European Food Safety Authority
  12. Altmetric Badge
    Chapter 11 Computational Toxicology and Drug Discovery
  13. Altmetric Badge
    Chapter 12 Approaching Pharmacological Space: Events and Components
  14. Altmetric Badge
    Chapter 13 Computational Toxicology Methods in Chemical Library Design and High-Throughput Screening Hit Validation
  15. Altmetric Badge
    Chapter 14 Enalos Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
  16. Altmetric Badge
    Chapter 15 Ion Channels in Drug Discovery and Safety Pharmacology
  17. Altmetric Badge
    Chapter 16 Computational Approaches in Multitarget Drug Discovery
  18. Altmetric Badge
    Chapter 17 Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy
  19. Altmetric Badge
    Chapter 18 Toxicity Potential of Nutraceuticals
  20. Altmetric Badge
    Chapter 19 Impact of Pharmaceuticals on the Environment: Risk Assessment Using QSAR Modeling Approach
  21. Altmetric Badge
    Chapter 20 (Q)SAR Methods for Predicting Genotoxicity and Carcinogenicity: Scientific Rationale and Regulatory Frameworks
  22. Altmetric Badge
    Chapter 21 Stem Cell-Based Methods to Predict Developmental Chemical Toxicity
  23. Altmetric Badge
    Chapter 22 Predicting Chemically Induced Skin Sensitization by Using In Chemico / In Vitro Methods
  24. Altmetric Badge
    Chapter 23 Hepatotoxicity Prediction by Systems Biology Modeling of Disturbed Metabolic Pathways Using Gene Expression Data
  25. Altmetric Badge
    Chapter 24 Nontest Methods to Predict Acute Toxicity: State of the Art for Applications of In Silico Methods
  26. Altmetric Badge
    Chapter 25 Predictive Systems Toxicology
  27. Altmetric Badge
    Chapter 26 Chemoinformatic Approach to Assess Toxicity of Ionic Liquids
  28. Altmetric Badge
    Chapter 27 Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results
Attention for Chapter 5: Machine Learning Methods in Computational Toxicology
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Machine Learning Methods in Computational Toxicology
Chapter number 5
Book title
Computational Toxicology
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7899-1_5
Pubmed ID
Book ISBNs
978-1-4939-7898-4, 978-1-4939-7899-1
Authors

Igor I. Baskin, Baskin, Igor I.

Abstract

Various methods of machine learning, supervised and unsupervised, linear and nonlinear, classification and regression, in combination with various types of molecular descriptors, both "handcrafted" and "data-driven," are considered in the context of their use in computational toxicology. The use of multiple linear regression, variants of naïve Bayes classifier, k-nearest neighbors, support vector machine, decision trees, ensemble learning, random forest, several types of neural networks, and deep learning is the focus of attention of this review. The role of fragment descriptors, graph mining, and graph kernels is highlighted. The application of unsupervised methods, such as Kohonen's self-organizing maps and related approaches, which allow for combining predictions with data analysis and visualization, is also considered. The necessity of applying a wide range of machine learning methods in computational toxicology is underlined.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Student > Bachelor 6 10%
Student > Master 4 7%
Researcher 4 7%
Student > Doctoral Student 3 5%
Other 5 8%
Unknown 25 42%
Readers by discipline Count As %
Chemistry 10 17%
Computer Science 7 12%
Biochemistry, Genetics and Molecular Biology 3 5%
Agricultural and Biological Sciences 2 3%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 9 15%
Unknown 26 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2022.
All research outputs
#4,988,555
of 24,261,860 outputs
Outputs from Methods in molecular biology
#1,429
of 13,644 outputs
Outputs of similar age
#104,245
of 450,618 outputs
Outputs of similar age from Methods in molecular biology
#114
of 1,482 outputs
Altmetric has tracked 24,261,860 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,644 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,618 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 1,482 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.