↓ Skip to main content

Mammalian Transient Receptor Potential (TRP) Cation Channels

Overview of attention for book
Attention for Chapter 25: TRPML2 and Mucolipin Evolution
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
TRPML2 and Mucolipin Evolution
Chapter number 25
Book title
Mammalian Transient Receptor Potential (TRP) Cation Channels
Published in
Handbook of experimental pharmacology, January 2016
DOI 10.1007/978-3-642-54215-2_25
Pubmed ID
Book ISBNs
978-3-64-254214-5, 978-3-64-254215-2
Authors

Jaime García-Añoveros, Teerawat Wiwatpanit, García-Añoveros, Jaime, Wiwatpanit, Teerawat

Abstract

The TRPML2 protein, encoded by the Mcoln2 gene, is one of the three mucolipins (TRPML1-3), a subset of the TRP superfamily of ion channels. Although there are no thorough studies on the cellular distribution of TRPML2, its mRNA appears to be largely restricted to lymphocytes and other immune cells. This contrasts with the ubiquitous expression of TRPML1 and the limited but diverse expression of TRPML3 and clearly suggests a specialized role for TRPML2 in immunity. Localization studies indicate that TRPML2 is present in lysosomes (including the specialized lysosome-related organelle that B-lymphocytes use for processing of the antigen-bound B-cell receptor), late endosomes, recycling endosomes, and, at a much lower level, the plasma membrane. Heterologously expressed TRPML2, like TRPML1 and/or TRPML3, forms ion channels that can be activated by a gain-of-function mutation (alanine to proline in the fifth transmembrane domain, close to the pore) that favors the open state, by a transient reduction of extracellular sodium followed by sodium replenishment, by small chemicals related to sulfonamides, and by PI(3,5)P2, a rare phosphoinositide that naturally accumulates in the membranes of endosomes and lysosomes and thus could act as a physiologically relevant agonist. TRPML2 channels are inwardly rectifying and permeable to Ca(2+), Na(+), and Fe(2+). When heterologously co-expressed, TRPML2 can form heteromultimers with TRPML1 and TRPML3. In B-lymphocytes, TRPML2 and TRPML1 may play redundant roles in the function of their specialized lysosome. Although the specific subcellular function of TRPML2 is unknown, distribution and channel properties suggest roles in calcium release from endolysosomes, perhaps to regulate vesicle fusion and/or subsequent scission or to release calcium from intracellular acidic stores for signaling in the cytosol. Alternatively, TRPML2 could function in the plasma membrane, and its abundance in vesicles of the endocytic pathway could simply be due to regulation by endocytosis and exocytosis. The Mcoln2 gene is closely downstream from and in the same orientation as Mcoln3 in the genomes of most jawed vertebrates (from humans to sharks) with the exception of pigs, Xenopus tropicalis, and ray-finned fishes. The close homology of TRPML2 and 3 (closer to each other than to TRPML1) suggests that Mcoln2 and Mcoln3 arose from unequal crossing over that duplicated a common ancestor and placed both gene copies in tandem. These genes would have come apart subsequently in pigs, Xenopus, and the ancestor to ray-finned fishes. All jawed vertebrates for which we have thorough genomic knowledge have distinct Mcoln1, 2, and 3 genes (except ray-finned fishes which, probably due to the whole-genome duplication in their common ancestor, have two Mcoln1-like genes and two Mcoln3-like genes, although only one Mcoln2 gene). However, the available genomes of invertebrate deuterostomes (a sea urchin, lancelet, and two tunicates) contain a single mucolipin gene that is equally distant from the three vertebrate mucolipins. Hence, vertebrate mucolipins arose through two rounds of gene duplication (the first one likely producing Mcoln1 and the ancestor to Mcoln2 and 3) at some time between the onset of craniates and that of jawed vertebrates. This is also the evolutionary period during which adaptive immunity appeared. Given the restricted expression of TRPML2 in immune cells, this evolutionary history suggests a functional role in the adaptive immunity characteristic of vertebrates.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 17%
Student > Master 2 11%
Professor > Associate Professor 2 11%
Student > Ph. D. Student 1 6%
Unknown 10 56%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Arts and Humanities 1 6%
Nursing and Health Professions 1 6%
Agricultural and Biological Sciences 1 6%
Other 1 6%
Unknown 10 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2020.
All research outputs
#7,212,132
of 22,796,179 outputs
Outputs from Handbook of experimental pharmacology
#217
of 647 outputs
Outputs of similar age
#119,977
of 396,595 outputs
Outputs of similar age from Handbook of experimental pharmacology
#19
of 51 outputs
Altmetric has tracked 22,796,179 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 647 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,595 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.