↓ Skip to main content

Characterization of Nanoparticles Intended for Drug Delivery

Overview of attention for book
Cover of 'Characterization of Nanoparticles Intended for Drug Delivery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Evaluating Nanomedicines: Obstacles and Advancements
  3. Altmetric Badge
    Chapter 2 Detection of Bacterial Contamination in Nanoparticle Formulations by Agar Plate Test
  4. Altmetric Badge
    Chapter 3 Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations
  5. Altmetric Badge
    Chapter 4 Elemental Analysis in Biological Matrices Using ICP-MS
  6. Altmetric Badge
    Chapter 5 PEG Quantitation Using Reversed-Phase High-Performance Liquid Chromatography and Charged Aerosol Detection
  7. Altmetric Badge
    Chapter 6 Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis
  8. Altmetric Badge
    Chapter 7 Immunoelectron Microscopy for Visualization of Nanoparticles
  9. Altmetric Badge
    Chapter 8 Imaging of Liposomes by Transmission Electron Microscopy
  10. Altmetric Badge
    Chapter 9 Updated Method for In Vitro Analysis of Nanoparticle Hemolytic Properties
  11. Altmetric Badge
    Chapter 10 In Vitro Assessment of Nanoparticle Effects on Blood Coagulation
  12. Altmetric Badge
    Chapter 11 In Vitro Analysis of Nanoparticle Effects on the Zymosan Uptake by Phagocytic Cells
  13. Altmetric Badge
    Chapter 12 Assessing NLRP3 Inflammasome Activation by Nanoparticles
  14. Altmetric Badge
    Chapter 13 Analysis of Complement Activation by Nanoparticles
  15. Altmetric Badge
    Chapter 14 Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo
  16. Altmetric Badge
    Chapter 15 Analysis of Pro-inflammatory Cytokine and Type II Interferon Induction by Nanoparticles
  17. Altmetric Badge
    Chapter 16 Analysis of Nanoparticle-Adjuvant Properties In Vivo
  18. Altmetric Badge
    Chapter 17 In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions
  19. Altmetric Badge
    Chapter 18 Autophagy Monitoring Assay II: Imaging Autophagy Induction in LLC-PK1 Cells Using GFP-LC3 Protein Fusion Construct
  20. Altmetric Badge
    Chapter 19 Improved Ultrafiltration Method to Measure Drug Release from Nanomedicines Utilizing a Stable Isotope Tracer
  21. Altmetric Badge
    Chapter 20 Designing an In Vivo Efficacy Study of Nanomedicines for Preclinical Tumor Growth Inhibition
Attention for Chapter 3: Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations
Chapter number 3
Book title
Characterization of Nanoparticles Intended for Drug Delivery
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7352-1_3
Pubmed ID
Book ISBNs
978-1-4939-7350-7, 978-1-4939-7352-1
Authors

Barry W. Neun, Marina A. Dobrovolskaia, Neun, Barry W., Dobrovolskaia, Marina A.

Abstract

Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 15%
Other 2 10%
Student > Bachelor 2 10%
Student > Doctoral Student 2 10%
Professor 1 5%
Other 1 5%
Unknown 9 45%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 20%
Biochemistry, Genetics and Molecular Biology 2 10%
Agricultural and Biological Sciences 1 5%
Chemistry 1 5%
Engineering 1 5%
Other 0 0%
Unknown 11 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2023.
All research outputs
#7,179,939
of 25,076,138 outputs
Outputs from Methods in molecular biology
#2,146
of 14,101 outputs
Outputs of similar age
#135,516
of 454,679 outputs
Outputs of similar age from Methods in molecular biology
#184
of 1,485 outputs
Altmetric has tracked 25,076,138 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 14,101 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,679 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 1,485 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.