↓ Skip to main content

Membrane Protein Complexes: Structure and Function

Overview of attention for book
Attention for Chapter 4: Bacterial Mechanosensitive Channels
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Bacterial Mechanosensitive Channels
Chapter number 4
Book title
Membrane Protein Complexes: Structure and Function
Published in
Sub cellular biochemistry, January 2018
DOI 10.1007/978-981-10-7757-9_4
Pubmed ID
Book ISBNs
978-9-81-107756-2, 978-9-81-107757-9
Authors

Tim Rasmussen, Akiko Rasmussen, Rasmussen, Tim, Rasmussen, Akiko

Abstract

Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 30%
Student > Ph. D. Student 4 17%
Student > Bachelor 3 13%
Student > Master 2 9%
Professor 2 9%
Other 0 0%
Unknown 5 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 39%
Agricultural and Biological Sciences 3 13%
Chemistry 3 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Environmental Science 1 4%
Other 1 4%
Unknown 5 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2018.
All research outputs
#15,505,836
of 23,043,346 outputs
Outputs from Sub cellular biochemistry
#192
of 364 outputs
Outputs of similar age
#269,875
of 442,409 outputs
Outputs of similar age from Sub cellular biochemistry
#7
of 15 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 364 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,409 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.