↓ Skip to main content

Oogenesis

Overview of attention for book
Attention for Chapter 12: Informational content of the echinoderm egg.
Altmetric Badge

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Informational content of the echinoderm egg.
Chapter number 12
Book title
Oogenesis
Published in
Developmental biology (New York, N.Y. : 1985), January 1985
DOI 10.1007/978-1-4615-6814-8_12
Pubmed ID
Book ISBNs
978-1-4615-6816-2, 978-1-4615-6814-8
Authors

Bruce P. Brandhorst, Brandhorst, Bruce P.

Abstract

The sea urchin egg contains a store of mRNA synthesized during oogenesis but translated only after fertilization, which accounts for a large, rapid increase in the rate of synthesis of largely the same set of proteins synthesized by eggs. Starfish oocytes contain a population of stored maternal mRNA that becomes actively translated upon GVBD and codes for a set of proteins distinct from that synthesized by oocytes. The sequence complexity of RNA in echinoderm eggs is about 3.5 x 10(8) nucleotides, enough to code for about 12,000 different mRNAs averaging 3 kb in length. About 2-4% of the egg RNA functions as mRNA during early embryonic development; most of the sequences are rare, represented in a few thousand copies per egg, but some are considerably more abundant. Many of the stored RNA sequences accumulate during the period of vitellogenesis, which lasts a few weeks. The mechanisms of storage and translational activation of maternal mRNA are not well understood. Histone mRNAs are sequested in the egg pronucleus until first cleavage, but other mRNAs are widely distributed in the cytoplasm. The population of maternal RNA includes many very large molecules having interspersed repetitive sequence transcripts colinear with single-copy sequences. The structural features of much of the cytoplasmic maternal RNA is thus reminiscent of incompletely processed nuclear precursors of mRNA. The functional role of these strange molecules is not understood, but many interesting possibilities have been considered. For instance, they may be segregated into different cell lineages during cleavage and/or they may become translationally activated by selective processing during development. Maternal mRNA appears to be underloaded with ribosomes when translated, possibly because the coding sequences are short relative to the size of the mRNA. Most abundant and many rare mRNA sequences persist during embryonic development. The rare sequence molecules are replaced by newly synthesized RNA, but some abundant maternal transcripts appear to persist throughout embryonic development. Most of the proteins present in the egg do not change significantly in mass during development, but a few decline or accumulate substantially. Together, these observations indicate that much of the information for embryogenesis is stored in the egg, although substantial changes in gene expression occur during development.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 50%
Student > Master 1 17%
Unknown 2 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 50%
Biochemistry, Genetics and Molecular Biology 1 17%
Unknown 2 33%