↓ Skip to main content

Clinical Applications of Mass Spectrometry in Drug Analysis

Overview of attention for book
Cover of 'Clinical Applications of Mass Spectrometry in Drug Analysis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.
  3. Altmetric Badge
    Chapter 2 Quantitation of Flecainide, Mexiletine, Propafenone, and Amiodarone in Serum or Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  4. Altmetric Badge
    Chapter 3 Quantitation of the Oral Anticoagulants Dabigatran, Rivaroxaban, Apixaban, and Warfarin in Plasma Using Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC-MS/MS)
  5. Altmetric Badge
    Chapter 4 Simultaneous Quantitation of Lamotrigine, Levetiracetam, 10-Hydroxycarbazepine, Topiramate, and Zonisamide in Serum Using HPLC-MS/MS
  6. Altmetric Badge
    Chapter 5 Quantification of the Triazole Antifungal Compounds Voriconazole and Posaconazole in Human Serum or Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS)
  7. Altmetric Badge
    Chapter 6 Quantitation of Haloperidol, Fluphenazine, Perphenazine, and Thiothixene in Serum or Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  8. Altmetric Badge
    Chapter 7 Quantitation of Total Buprenorphine and Norbuprenorphine in Meconium by LC-MS/MS
  9. Altmetric Badge
    Chapter 8 Quantitation of Buprenorphine, Norbuprenorphine, Buprenorphine Glucuronide, Norbuprenorphine Glucuronide, and Naloxone in Urine by LC-MS/MS
  10. Altmetric Badge
    Chapter 9 A Simple Liquid Chromatography Tandem Mass Spectrometry Method for Quantitation of Plasma Busulfan
  11. Altmetric Badge
    Chapter 10 High-Throughput Quantitation of Busulfan in Plasma Using Ultrafast Solid-Phase Extraction Tandem Mass Spectrometry (SPE-MS/MS)
  12. Altmetric Badge
    Chapter 11 Quantification of 11-Carboxy-Delta-9-Tetrahydrocannabinol (THC-COOH) in Meconium Using Gas Chromatography/Mass Spectrometry (GC/MS)
  13. Altmetric Badge
    Chapter 12 Quantitation of Carisoprodol and Meprobamate in Urine and Plasma Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  14. Altmetric Badge
    Chapter 13 Cetirizine Quantification by High-Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
  15. Altmetric Badge
    Chapter 14 Quantification of Docetaxel in Serum Using Turbulent Flow Liquid Chromatography Electrospray Tandem Mass Spectrometry (TFC-HPLC-ESI-MS/MS)
  16. Altmetric Badge
    Chapter 15 Comprehensive Urine Drug Screen by Gas Chromatography/Mass Spectrometry (GC/MS)
  17. Altmetric Badge
    Chapter 16 Broad-Spectrum Drug Screening Using Liquid Chromatography-Hybrid Triple-Quadrupole Linear Ion Trap Mass Spectrometry
  18. Altmetric Badge
    Chapter 17 High-Resolution Mass Spectrometry for Untargeted Drug Screening
  19. Altmetric Badge
    Chapter 18 Quantitation of Ethyl Glucuronide and Ethyl Sulfate in Urine Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  20. Altmetric Badge
    Chapter 19 Quantification of Hydroxychloroquine in Blood Using Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS)
  21. Altmetric Badge
    Chapter 20 Quantification of Iohexol in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  22. Altmetric Badge
    Chapter 21 Quantitation of Teriflunomide in Human Serum/Plasma Across a 40,000-Fold Concentration Range by LC/MS/MS.
  23. Altmetric Badge
    Chapter 22 Determination of Menthol in Plasma and Urine by Gas Chromatography/Mass Spectrometry (GC/MS)
  24. Altmetric Badge
    Chapter 23 Development of an Assay for Methotrexate and Its Metabolites 7-Hydroxy Methotrexate and DAMPA in Serum by LC-MS/MS
  25. Altmetric Badge
    Chapter 24 Quantitative, Multidrug Pain Medication Testing by Liquid Chromatography: Tandem Mass Spectrometry (LC-MS/MS)
  26. Altmetric Badge
    Chapter 25 Quantification of Free Phenytoin by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)
  27. Altmetric Badge
    Chapter 26 Detection of Stimulants and Narcotics by Liquid Chromatography-Tandem Mass Spectrometry and Gas Chromatography-Mass Spectrometry for Sports Doping Control
  28. Altmetric Badge
    Chapter 27 Quantification of Tricyclic Antidepressants in Serum Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS)
Attention for Chapter 3: Quantitation of the Oral Anticoagulants Dabigatran, Rivaroxaban, Apixaban, and Warfarin in Plasma Using Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC-MS/MS)
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

patent
1 patent

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitation of the Oral Anticoagulants Dabigatran, Rivaroxaban, Apixaban, and Warfarin in Plasma Using Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC-MS/MS)
Chapter number 3
Book title
Clinical Applications of Mass Spectrometry in Drug Analysis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3252-8_3
Pubmed ID
Book ISBNs
978-1-4939-3251-1, 978-1-4939-3252-8
Authors

Jaime H. Noguez, James C. Ritchie, Noguez, Jaime H., Ritchie, James C.

Abstract

This chapter describes a method to measure the oral anticoagulants dabigatran, rivaroxaban, apixaban, and warfarin in plasma samples using ultra-performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS). The instrument is operated in multiple reaction monitoring (MRM) mode with an electrospray ionization (ESI) source in positive ionization mode. Samples are extracted with a 90:10 methanol/0.1 N hydrochloric acid solution containing stable isotope-labeled internal standards for each analyte. After centrifugation the supernatant is transferred to a mass spectrometry vial, injected onto the UPLC-ESI-MS/MS, and quantified using an eight-point calibration curve.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 8%
Slovenia 1 8%
Unknown 11 85%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Student > Doctoral Student 2 15%
Librarian 1 8%
Student > Bachelor 1 8%
Student > Master 1 8%
Other 0 0%
Unknown 5 38%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 2 15%
Medicine and Dentistry 2 15%
Chemistry 2 15%
Neuroscience 1 8%
Social Sciences 1 8%
Other 0 0%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2023.
All research outputs
#7,744,540
of 23,549,388 outputs
Outputs from Methods in molecular biology
#2,423
of 13,396 outputs
Outputs of similar age
#124,983
of 396,955 outputs
Outputs of similar age from Methods in molecular biology
#272
of 1,472 outputs
Altmetric has tracked 23,549,388 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,396 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,955 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 1,472 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.