↓ Skip to main content

Cartilage Tissue Engineering

Overview of attention for book
Cover of 'Cartilage Tissue Engineering'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cartilage Tissue Engineering
  3. Altmetric Badge
    Chapter 2 Cartilage Tissue Engineering
  4. Altmetric Badge
    Chapter 3 Mesenchymal Stem Cells Derived from Human Bone Marrow
  5. Altmetric Badge
    Chapter 4 Cartilage Tissue Engineering
  6. Altmetric Badge
    Chapter 5 Derivation and Chondrogenic Commitment of Human Embryonic Stem Cell-Derived Mesenchymal Progenitors
  7. Altmetric Badge
    Chapter 6 Differentiation of Human Induced Pluripotent Stem Cells to Chondrocytes
  8. Altmetric Badge
    Chapter 7 Gene Transfer and Gene Silencing in Stem Cells to Promote Chondrogenesis
  9. Altmetric Badge
    Chapter 8 Hydrogels with Tunable Properties
  10. Altmetric Badge
    Chapter 9 Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration
  11. Altmetric Badge
    Chapter 10 Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft
  12. Altmetric Badge
    Chapter 11 Bioprinted Scaffolds for Cartilage Tissue Engineering.
  13. Altmetric Badge
    Chapter 12 Scaffolds for Controlled Release of Cartilage Growth Factors
  14. Altmetric Badge
    Chapter 13 Nanostructured Capsules for Cartilage Tissue Engineering
  15. Altmetric Badge
    Chapter 14 Stratified Scaffolds for Osteochondral Tissue Engineering
  16. Altmetric Badge
    Chapter 15 Mechanobioreactors for Cartilage Tissue Engineering
  17. Altmetric Badge
    Chapter 16 Cartilage Tissue Engineering
  18. Altmetric Badge
    Chapter 17 Microbioreactors for Cartilage Tissue Engineering
  19. Altmetric Badge
    Chapter 18 Transplantation of Tissue-Engineered Cartilage in an Animal Model (Xenograft and Autograft): Construct Validation.
  20. Altmetric Badge
    Chapter 19 Cartilage Tissue Engineering
  21. Altmetric Badge
    Chapter 20 Mechanical Testing of Cartilage Constructs
Attention for Chapter 10: Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft
Altmetric Badge

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft
Chapter number 10
Book title
Cartilage Tissue Engineering
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2938-2_10
Pubmed ID
Book ISBNs
978-1-4939-2937-5, 978-1-4939-2938-2
Authors

Ting Ting Lau, Wenyan Leong, Yvonne Peck, Kai Su, Dong-An Wang

Abstract

The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 100%
Readers by discipline Count As %
Unspecified 1 100%