↓ Skip to main content

Biological Basis of Alcohol-Induced Cancer

Overview of attention for book
Cover of 'Biological Basis of Alcohol-Induced Cancer'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction
  3. Altmetric Badge
    Chapter 2 Alcohol and Breast Cancer: Reconciling Epidemiological and Molecular Data.
  4. Altmetric Badge
    Chapter 3 Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.
  5. Altmetric Badge
    Chapter 4 Alcohol and Cancer: An Overview with Special Emphasis on the Role of Acetaldehyde and Cytochrome P450 2E1
  6. Altmetric Badge
    Chapter 5 Implications of Acetaldehyde-Derived DNA Adducts for Understanding Alcohol-Related Carcinogenesis.
  7. Altmetric Badge
    Chapter 6 The Role of Iron in Alcohol-Mediated Hepatocarcinogenesis
  8. Altmetric Badge
    Chapter 7 Alcoholic Cirrhosis and Hepatocellular Carcinoma
  9. Altmetric Badge
    Chapter 8 TLR4-Dependent Tumor-Initiating Stem Cell-Like Cells (TICs) in Alcohol-Associated Hepatocellular Carcinogenesis.
  10. Altmetric Badge
    Chapter 9 Synergistic Toxic Interactions Between CYP2E1, LPS/TNFα, and JNK/p38 MAP Kinase and Their Implications in Alcohol-Induced Liver Injury.
  11. Altmetric Badge
    Chapter 10 Understanding the Tumor Suppressor PTEN in Chronic Alcoholism and Hepatocellular Carcinoma.
  12. Altmetric Badge
    Chapter 11 Alcohol Consumption, Wnt/β-Catenin Signaling, and Hepatocarcinogenesis
  13. Altmetric Badge
    Chapter 12 Alcohol and HCV: Implications for Liver Cancer.
  14. Altmetric Badge
    Chapter 13 Application of mass spectrometry-based metabolomics in identification of early noninvasive biomarkers of alcohol-induced liver disease using mouse model.
  15. Altmetric Badge
    Chapter 14 Alcohol metabolism by oral streptococci and interaction with human papillomavirus leads to malignant transformation of oral keratinocytes.
  16. Altmetric Badge
    Chapter 15 Genetic Polymorphisms of Alcohol Dehydrogense-1B and Aldehyde Dehydrogenase-2, Alcohol Flushing, Mean Corpuscular Volume, and Aerodigestive Tract Neoplasia in Japanese Drinkers
  17. Altmetric Badge
    Chapter 16 Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic Cancers
  18. Altmetric Badge
    Chapter 17 Alcohol, Carcinoembryonic Antigen Processing and Colorectal Liver Metastases.
  19. Altmetric Badge
    Chapter 18 Alcohol Consumption and Antitumor Immunity: Dynamic Changes from Activation to Accelerated Deterioration of the Immune System.
  20. Altmetric Badge
    Chapter 19 A Perspective on Chemoprevention by Resveratrol in Head and Neck Squamous Cell Carcinoma
  21. Altmetric Badge
    Chapter 20 The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis
  22. Altmetric Badge
    Chapter 21 The Effect of Alcohol on Sirt1 Expression and Function in Animal and Human Models of Hepatocellular Carcinoma (HCC).
  23. Altmetric Badge
    Chapter 22 Transgenic mouse models for alcohol metabolism, toxicity, and cancer.
  24. Altmetric Badge
    Chapter 23 Fetal Alcohol Exposure Increases Susceptibility to Carcinogenesis and Promotes Tumor Progression in Prostate Gland
  25. Altmetric Badge
    Chapter 24 Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.
Attention for Chapter 3: Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (75th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
8 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.
Chapter number 3
Book title
Biological Basis of Alcohol-Induced Cancer
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-09614-8_3
Pubmed ID
Book ISBNs
978-3-31-909613-1, 978-3-31-909614-8
Authors

C J Peter Eriksson, C. J. Peter Eriksson, Eriksson, C. J. Peter

Abstract

Alcohol drinking increases the risk for a number of cancers. Currently, the highest risk (Group 1) concerns oral cavity, pharynx, larynx, esophagus, liver, colorectum, and female breast, as assessed by the International Agency for Research on Cancer (IARC). Alcohol and other beverage constituents, their metabolic effects, and alcohol-related unhealthy lifestyles have been suggested as etiological factors. The aim of the present survey is to evaluate the carcinogenic role of acetaldehyde in alcohol-related cancers, with special emphasis on the genetic-epidemiological evidence. Acetaldehyde, as a constituent of alcoholic beverages, and microbial and endogenous alcohol oxidation well explain why alcohol-related cancers primarily occur in the digestive tracts and other tissues with active alcohol and acetaldehyde metabolism. Genetic-epidemiological research has brought compelling evidence for the causality of acetaldehyde in alcohol-related cancers. Thus, IARC recently categorized alcohol-drinking-related acetaldehyde to Group 1 for head and neck and esophageal cancers. This is probably just the tip of the iceberg, since more recent epidemiological studies have also shown significant positive associations between the aldehyde dehydrogenase ALDH2 (rs671)*2 allele (encoding inactive enzyme causing high acetaldehyde elevations) and gastric, colorectal, lung, and hepatocellular cancers. However, a number of the current studies lack the appropriate matching or stratification of alcohol drinking in the case-control comparisons, which has led to erroneous interpretations of the data. Future studies should consider these aspects more thoroughly. The polymorphism phenotypes (flushing and nausea) may provide valuable tools for future successful health education in the prevention of alcohol-drinking-related cancers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Other 4 13%
Student > Master 4 13%
Researcher 3 10%
Student > Bachelor 2 7%
Student > Postgraduate 2 7%
Other 4 13%
Unknown 11 37%
Readers by discipline Count As %
Medicine and Dentistry 8 27%
Agricultural and Biological Sciences 4 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Economics, Econometrics and Finance 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 2 7%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2018.
All research outputs
#6,197,830
of 22,772,779 outputs
Outputs from Advances in experimental medicine and biology
#975
of 4,928 outputs
Outputs of similar age
#84,528
of 352,911 outputs
Outputs of similar age from Advances in experimental medicine and biology
#49
of 272 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 4,928 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,911 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.