↓ Skip to main content

Biological Basis of Alcohol-Induced Cancer

Overview of attention for book
Cover of 'Biological Basis of Alcohol-Induced Cancer'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction
  3. Altmetric Badge
    Chapter 2 Alcohol and Breast Cancer: Reconciling Epidemiological and Molecular Data.
  4. Altmetric Badge
    Chapter 3 Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking.
  5. Altmetric Badge
    Chapter 4 Alcohol and Cancer: An Overview with Special Emphasis on the Role of Acetaldehyde and Cytochrome P450 2E1
  6. Altmetric Badge
    Chapter 5 Implications of Acetaldehyde-Derived DNA Adducts for Understanding Alcohol-Related Carcinogenesis.
  7. Altmetric Badge
    Chapter 6 The Role of Iron in Alcohol-Mediated Hepatocarcinogenesis
  8. Altmetric Badge
    Chapter 7 Alcoholic Cirrhosis and Hepatocellular Carcinoma
  9. Altmetric Badge
    Chapter 8 TLR4-Dependent Tumor-Initiating Stem Cell-Like Cells (TICs) in Alcohol-Associated Hepatocellular Carcinogenesis.
  10. Altmetric Badge
    Chapter 9 Synergistic Toxic Interactions Between CYP2E1, LPS/TNFα, and JNK/p38 MAP Kinase and Their Implications in Alcohol-Induced Liver Injury.
  11. Altmetric Badge
    Chapter 10 Understanding the Tumor Suppressor PTEN in Chronic Alcoholism and Hepatocellular Carcinoma.
  12. Altmetric Badge
    Chapter 11 Alcohol Consumption, Wnt/β-Catenin Signaling, and Hepatocarcinogenesis
  13. Altmetric Badge
    Chapter 12 Alcohol and HCV: Implications for Liver Cancer.
  14. Altmetric Badge
    Chapter 13 Application of mass spectrometry-based metabolomics in identification of early noninvasive biomarkers of alcohol-induced liver disease using mouse model.
  15. Altmetric Badge
    Chapter 14 Alcohol metabolism by oral streptococci and interaction with human papillomavirus leads to malignant transformation of oral keratinocytes.
  16. Altmetric Badge
    Chapter 15 Genetic Polymorphisms of Alcohol Dehydrogense-1B and Aldehyde Dehydrogenase-2, Alcohol Flushing, Mean Corpuscular Volume, and Aerodigestive Tract Neoplasia in Japanese Drinkers
  17. Altmetric Badge
    Chapter 16 Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic Cancers
  18. Altmetric Badge
    Chapter 17 Alcohol, Carcinoembryonic Antigen Processing and Colorectal Liver Metastases.
  19. Altmetric Badge
    Chapter 18 Alcohol Consumption and Antitumor Immunity: Dynamic Changes from Activation to Accelerated Deterioration of the Immune System.
  20. Altmetric Badge
    Chapter 19 A Perspective on Chemoprevention by Resveratrol in Head and Neck Squamous Cell Carcinoma
  21. Altmetric Badge
    Chapter 20 The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis
  22. Altmetric Badge
    Chapter 21 The Effect of Alcohol on Sirt1 Expression and Function in Animal and Human Models of Hepatocellular Carcinoma (HCC).
  23. Altmetric Badge
    Chapter 22 Transgenic mouse models for alcohol metabolism, toxicity, and cancer.
  24. Altmetric Badge
    Chapter 23 Fetal Alcohol Exposure Increases Susceptibility to Carcinogenesis and Promotes Tumor Progression in Prostate Gland
  25. Altmetric Badge
    Chapter 24 Fetal alcohol exposure and mammary tumorigenesis in offspring: role of the estrogen and insulin-like growth factor systems.
Attention for Chapter 17: Alcohol, Carcinoembryonic Antigen Processing and Colorectal Liver Metastases.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Alcohol, Carcinoembryonic Antigen Processing and Colorectal Liver Metastases.
Chapter number 17
Book title
Biological Basis of Alcohol-Induced Cancer
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-09614-8_17
Pubmed ID
Book ISBNs
978-3-31-909613-1, 978-3-31-909614-8
Authors

Benita McVicker, Dean J Tuma, Kathryn E Lazure, Peter Thomas, Carol A Casey, Dean J. Tuma, Kathryn E. Lazure, Carol A. Casey, McVicker, Benita, Tuma, Dean J., Lazure, Kathryn E., Thomas, Peter, Casey, Carol A.

Abstract

It is well established that alcohol consumption is related to the development of alcoholic liver disease. Additionally, it is appreciated that other major health issues are associated with alcohol abuse, including colorectal cancer (CRC) and its metastatic growth to the liver. Although a correlation exists between alcohol use and the development of diseases, the search continues for a better understanding of specific mechanisms. Concerning the role of alcohol in CRC liver metastases, recent research is aimed at characterizing the processing of carcinoembryonic antigen (CEA), a glycoprotein that is associated with and secreted by CRC cells. A positive correlation exists between serum CEA levels, liver metastasis, and alcohol consumption in CRC patients, although the mechanism is not understood. It is known that circulating CEA is processed primarily by the liver, first by nonparenchymal Kupffer cells (KCs) and secondarily, by hepatocytes via the asialoglycoprotein receptor (ASGPR). Since both KCs and hepatocytes are known to be significantly impacted by alcohol, it is hypothesized that alcohol-related effects to these liver cells will lead to altered CEA processing, including impaired asialo-CEA degradation, resulting in changes to the liver microenvironment and the metastatic potential of CRC cells. Also, it is predicted that CEA processing will affect cytokine production in the alcohol-injured liver, resulting in pro-metastatic changes such as enhanced adhesion molecule expression on the hepatic sinusoidal endothelium. This chapter examines the potential role that alcohol-induced liver cell impairments can have in the processing of CEA and associated mechanisms involved in CEA-related colorectal cancer liver metastasis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 38%
Student > Master 2 25%
Student > Postgraduate 1 13%
Lecturer 1 13%
Unknown 1 13%
Readers by discipline Count As %
Medicine and Dentistry 5 63%
Immunology and Microbiology 1 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 13%
Unknown 1 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2015.
All research outputs
#18,385,510
of 22,772,779 outputs
Outputs from Advances in experimental medicine and biology
#3,305
of 4,928 outputs
Outputs of similar age
#255,672
of 352,911 outputs
Outputs of similar age from Advances in experimental medicine and biology
#163
of 272 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,928 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,911 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.