↓ Skip to main content

Axon Growth and Guidance

Overview of attention for book
Attention for Chapter 5: Slits and their receptors.
Altmetric Badge

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
107 Mendeley
citeulike
3 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Slits and their receptors.
Chapter number 5
Book title
Axon Growth and Guidance
Published in
Advances in experimental medicine and biology, January 2007
DOI 10.1007/978-0-387-76715-4_5
Pubmed ID
Book ISBNs
978-0-387-76714-7, 978-0-387-76715-4
Authors

Alain Chédotal, Chédotal, Alain

Abstract

Slit was identified in Drosophila embryo as a gene involved in the patterning of larval cuticle. It was later shown that Slit is synthesized in the fly central nervous system by midline glia cells. Slit homologues have since been found in C. elegans and many vertebrate species, from amphibians, fishes, birds to mammals. A single slit was isolated in invertebrates, whereas there are three slit genes (slit1-slit3) in mammals, that have around 60% homology. All encodes large ECM glycoproteins of about 200 kDa (Fig. 1A), comprising, from their N terminus to their C terminus, a long stretch of four leucine rich repeats (LRR) connected by disulphide bonds, seven to nine EGF repeats, a domain, named ALPS (Agrin, Perlecan, Laminin, Slit) or laminin G-like module (see ref 17), and a cystein knot (Fig. 1A). Alternative spliced transcripts have been reported for Drosophila Slit2, human Slit2 and Slit3, and Slit1. Moreover, two Slit1 isoforms exist in zebrafish as a consequence of gene duplication. Last, in mammals, two Slit2 isoforms can be purified from brain extracts, a long 200 kDa one and a shorter 150 kDa form (Slit2-N) that was shown to result from the proteolytic processing of full-length Slit2. Human Slit and Slit3 and Drosophila Slit are also cleaved by an unknown protease in a large N-terminal fragment and a shorter C-terminal fragment, suggesting conserved mechanisms for Slit cleavage across species. Moreover, Slit fragments have different cell association characteristics in cell culture suggesting that they may also have different extents of diffusion, different binding properties, and, hence, different functional activities in vivo. This conclusion is supported by in vitro data showing that full-length Slit2 functions as an antagonist of Slit2-N in the DRG branching assay, and that Slit2-N, not full-length Slit2, causes collapse of OB growth cones. In addition, Slit1-N and full-length Slit1 can induce branching of cortical neurons (see below), but only full-length Slit1 repels cortical axons. Structure-function analysis in vertebrates and Drosophila demonstrated that the LRRs of Slits are required and sufficient to mediate their repulsive activities in neurons. More recent detailed structure function analysis of the LRR domains of Drosophila Slit, revealed that the active site of Slit (at least regarding its pro-angiogenic activity) is located on the second of the fourth LRR (LRR2), which is highly conserved between Slits. Slit can also dimerize through the LRR4 domain and the cystein knot.However, a Slit1 spliced-variant that lacks the cysteine knot and does not dimerize is still able to repel OB axons.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 107 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Portugal 1 <1%
France 1 <1%
Germany 1 <1%
United Kingdom 1 <1%
Italy 1 <1%
Unknown 100 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 30%
Researcher 17 16%
Student > Master 10 9%
Student > Doctoral Student 9 8%
Other 7 7%
Other 19 18%
Unknown 13 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 51 48%
Biochemistry, Genetics and Molecular Biology 15 14%
Neuroscience 9 8%
Medicine and Dentistry 7 7%
Psychology 3 3%
Other 9 8%
Unknown 13 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2020.
All research outputs
#7,454,298
of 22,789,076 outputs
Outputs from Advances in experimental medicine and biology
#1,227
of 4,933 outputs
Outputs of similar age
#42,173
of 156,822 outputs
Outputs of similar age from Advances in experimental medicine and biology
#19
of 47 outputs
Altmetric has tracked 22,789,076 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,933 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 156,822 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.