↓ Skip to main content

Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley

Overview of attention for article published in International Journal of Biometeorology, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley
Published in
International Journal of Biometeorology, January 2018
DOI 10.1007/s00484-018-1501-y
Pubmed ID
Authors

Michael Meier, Jürg Fuhrer, Annelie Holzkämper

Abstract

Late spring frost is a severe risk during early plant development. It may cause important economic damage to grapevine production. In a warming climate, late frost risk either could decline due to the reduction in frost days and an advancement of the last day of frost or increase due to a more pronounced shift forward of the start of the active growing period of the plants. These possibilities were analyzed in a case study for two locations in the lower Swiss Rhone Valley (Sion, Aigle) where viticulture is an important part of agriculture. Twelve phenology models were calibrated for the developmental stage BBCH09 (bud burst) using measured or reconstructed temperature data for two vineyards in Changins (1958 to 2012) and Leytron (1977 to 2014) together with observed phenological data. The day of year (DOY) for BBCH09 was then modelled for the years 1951 to 2050 using the best performing phenology model in combination with ten downscaled and bias-corrected climate scenarios. A 100-day period starting with BBCH09 was defined, during which daily mean and minimum temperatures were used to calculate three frost risk indices in each year. These indices were compared between the periods 1961-1990 (reference) and 2021-2050 (climate change scenario). Based on the average of the ensemble of climate model chains, BBCH09 advanced by 9 (range 7-11) (Aigle) and 7 (range 5-8) (Sion) days between the two time periods, similar to the shift in the last day of frost. The separate results of the different model chains suggest that, in the near future, late spring frost risk may increase or decrease, depending on location and climate change projections. While for the reference, the risk is larger at the warmer site (Sion) compared to that at the cooler site (Aigle), for the period 2021-2050, small shifts in both phenology and occurrence of frost (i.e., days with daily minimum temperature below 0 °C) lead to a small decrease in frost risk at the warmer but an increase at the cooler site. However, considerable uncertainties remain that are mostly related to climate model chains. Consequently, shifts in frost risk remain uncertain for the time period considered and the two study locations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 17 24%
Student > Ph. D. Student 10 14%
Student > Master 8 11%
Student > Bachelor 7 10%
Professor > Associate Professor 4 6%
Other 6 8%
Unknown 19 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 35%
Environmental Science 10 14%
Earth and Planetary Sciences 6 8%
Engineering 2 3%
Social Sciences 2 3%
Other 5 7%
Unknown 21 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 February 2018.
All research outputs
#2,595,115
of 23,018,998 outputs
Outputs from International Journal of Biometeorology
#258
of 1,299 outputs
Outputs of similar age
#62,136
of 441,261 outputs
Outputs of similar age from International Journal of Biometeorology
#11
of 22 outputs
Altmetric has tracked 23,018,998 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,299 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,261 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.