↓ Skip to main content

The Surfaceome

Overview of attention for book
Cover of 'The Surfaceome'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis Antigens
  3. Altmetric Badge
    Chapter 2 “Shaving” Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins
  4. Altmetric Badge
    Chapter 3 Methods for Mapping the Extracellular and Membrane Proteome in the Avian Embryo, and Identification of Putative Vascular Targets or Endothelial Genes
  5. Altmetric Badge
    Chapter 4 Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives
  6. Altmetric Badge
    Chapter 5 Application of Higher Density Iron Oxide Nanoparticle Pellicles to Enrich the Plasma Membrane and Its Proteome from Cells in Suspension
  7. Altmetric Badge
    Chapter 6 Proteomic Profiling of Secreted Proteins, Exosomes, and Microvesicles in Cell Culture Conditioned Media
  8. Altmetric Badge
    Chapter 7 Cloning, Expression, and Purification of the Glycosylated Transmembrane Protein, Cation-Dependent Mannose 6-Phosphate Receptor, from Sf9 Cells Using the Baculovirus System
  9. Altmetric Badge
    Chapter 8 Bispecific Antibody Armed T Cells to Target Cancer Cells
  10. Altmetric Badge
    Chapter 9 Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry
  11. Altmetric Badge
    Chapter 10 Detecting Cell Surface Expression of the G Protein-Coupled Receptor CXCR4
  12. Altmetric Badge
    Chapter 11 NaV Channels: Assaying Biosynthesis, Trafficking, Function
  13. Altmetric Badge
    Chapter 12 High-Content Electrophysiological Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes (hPSC-CMs)
  14. Altmetric Badge
    Chapter 13 Methods for Evaluation of Vascular Endothelial Cell Function with Transient Receptor Potential (TRP) Channel Drugs
  15. Altmetric Badge
    Chapter 14 Methods to Study the Signal Transduction of the Surface Receptor Tyrosine Kinase TrkB in Neurons
  16. Altmetric Badge
    Chapter 15 Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes
  17. Altmetric Badge
    Chapter 16 Extracellular Matrix Molecule-Based Capture of Mesenchymal Stromal Cells Under Flow
  18. Altmetric Badge
    Chapter 17 Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses
  19. Altmetric Badge
    Chapter 18 Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell–Matrix Interactions
  20. Altmetric Badge
    Chapter 19 Discovery of Surface Target Proteins Linking Drugs, Molecular Markers, Gene Regulation, Protein Networks, and Disease by Using a Web-Based Platform Targets-search
Attention for Chapter 1: Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis Antigens
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis Antigens
Chapter number 1
Book title
The Surfaceome
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7553-2_1
Pubmed ID
Book ISBNs
978-1-4939-7551-8, 978-1-4939-7553-2
Authors

Yulanda M. Williamson, Jennifer Whitmon, Rolieria West-Deadwyler, Hercules Moura, Adrian R. Woolfitt, Jon Rees, David M. Schieltz, John R. Barr

Abstract

The bacterial surfaceome, comprising outer membrane-sorted and/or associated (i.e., cell transporters), cell surface-exposed (i.e., adhesins) and extracellularly secreted proteins (i.e., toxins), has been characterized in bacterial pathogens, such as Bordetella pertussis (Bp) to provide information for use in development of diagnostic and prevention strategies. This protein subset has clinical significance, as these bacterial proteins are often associated with attachment to host cells, microbial pathogenesis and antibody-mediated immunity. Here we describe classical surface membrane protein enrichment techniques, followed by proteomic methodologies, such as gel-free protein separation and antibody-affinity capture technologies in combination with nano-liquid chromatography mass spectrometry, for the identification and characterization of Bp surfaceome proteins.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 20%
Student > Bachelor 2 20%
Professor > Associate Professor 1 10%
Unspecified 1 10%
Unknown 4 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 20%
Unspecified 1 10%
Immunology and Microbiology 1 10%
Chemistry 1 10%
Unknown 5 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2018.
All research outputs
#18,579,736
of 23,012,811 outputs
Outputs from Methods in molecular biology
#7,962
of 13,156 outputs
Outputs of similar age
#330,531
of 442,345 outputs
Outputs of similar age from Methods in molecular biology
#950
of 1,498 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,156 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,345 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.