↓ Skip to main content

Next Generation Sequencing

Overview of attention for book
Cover of 'Next Generation Sequencing'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 An Integrated Polysome Profiling and Ribosome Profiling Method to Investigate In Vivo Translatome
  3. Altmetric Badge
    Chapter 2 Measuring Nascent Transcripts by Nascent-seq
  4. Altmetric Badge
    Chapter 3 Genome-Wide Copy Number Alteration Detection in Preimplantation Genetic Diagnosis
  5. Altmetric Badge
    Chapter 4 Multiplexed Targeted Sequencing for Oxford Nanopore MinION: A Detailed Library Preparation Procedure
  6. Altmetric Badge
    Chapter 5 Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing
  7. Altmetric Badge
    Chapter 6 ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras
  8. Altmetric Badge
    Chapter 7 Genome-Wide Analysis of DNA Methylation in Single Cells Using a Post-bisulfite Adapter Tagging Approach
  9. Altmetric Badge
    Chapter 8 Sequencing of Genomes from Environmental Single Cells
  10. Altmetric Badge
    Chapter 9 SNP Discovery from Single and Multiplex Genome Assemblies of Non-model Organisms
  11. Altmetric Badge
    Chapter 10 CleanTag Adapters Improve Small RNA Next-Generation Sequencing Library Preparation by Reducing Adapter Dimers
  12. Altmetric Badge
    Chapter 11 Sampling, Extraction, and High-Throughput Sequencing Methods for Environmental Microbial and Viral Communities
  13. Altmetric Badge
    Chapter 12 A Bloody Primer: Analysis of RNA-Seq from Tissue Admixtures
  14. Altmetric Badge
    Chapter 13 Next-Generation Sequencing of Genome-Wide CRISPR Screens
  15. Altmetric Badge
    Chapter 14 Gene Profiling and T Cell Receptor Sequencing from Antigen-Specific CD4 T Cells
  16. Altmetric Badge
    Chapter 15 Investigate Global Chromosomal Interaction by Hi-C in Human Naive CD4 T Cells
  17. Altmetric Badge
    Chapter 16 Primer Extension, Capture, and On-Bead cDNA Ligation: An Efficient RNAseq Library Prep Method for Determining Reverse Transcription Termination Sites
Attention for Chapter 6: ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

blogs
1 blog
twitter
8 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras
Chapter number 6
Book title
Next Generation Sequencing
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7514-3_6
Pubmed ID
Book ISBNs
978-1-4939-7512-9, 978-1-4939-7514-3
Authors

Elizabeth Jaworski, Andrew Routh

Abstract

We recently reported a fragmentation-free method for the synthesis of Next-Generation Sequencing libraries called "ClickSeq" that uses biorthogonal click-chemistry in place of enzymes for the ligation of sequencing adaptors. We found that this approach dramatically reduces artifactual chimera formation, allowing the study of rare recombination events that include viral replication intermediates and defective-interfering viral RNAs. ClickSeq illustrates how robust, bio-orthogonal chemistry can be harnessed in vitro to capture and dissect complex biological processes. Here, we describe an updated protocol for the synthesis of "ClickSeq" libraries.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 41%
Student > Ph. D. Student 4 24%
Student > Postgraduate 2 12%
Other 1 6%
Student > Bachelor 1 6%
Other 0 0%
Unknown 2 12%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 59%
Chemistry 3 18%
Immunology and Microbiology 1 6%
Veterinary Science and Veterinary Medicine 1 6%
Unknown 2 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2018.
All research outputs
#2,751,303
of 25,026,088 outputs
Outputs from Methods in molecular biology
#497
of 14,087 outputs
Outputs of similar age
#60,308
of 454,475 outputs
Outputs of similar age from Methods in molecular biology
#26
of 1,484 outputs
Altmetric has tracked 25,026,088 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 14,087 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,475 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 1,484 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.