↓ Skip to main content

Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 2

Overview of attention for book
Attention for Chapter 6: Rapid In-vitro Testing for Chemotherapy Sensitivity in Leukaemia Patients.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Rapid In-vitro Testing for Chemotherapy Sensitivity in Leukaemia Patients.
Chapter number 6
Book title
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 2
Published in
Advances in biochemical engineering biotechnology, January 2014
DOI 10.1007/978-3-662-43619-6_6
Pubmed ID
Book ISBNs
978-3-66-243618-9, 978-3-66-243619-6
Authors

Elizabeth Anderson, Vyv Salisbury, Anderson E, Salisbury V, Anderson, Elizabeth, Salisbury, Vyv

Abstract

Bioluminescent bacterial biosensors can be used in a rapid in vitro assay to predict sensitivity to commonly used chemotherapy drugs in acute myeloid leukemia (AML). The nucleoside analog cytarabine (ara-C) is the key agent for treating AML; however, up to 30 % of patients fail to respond to treatment. Screening of patient blood samples to determine drug response before commencement of treatment is needed. To achieve this aim, a self-bioluminescent reporter strain of Escherichia coli has been constructed and evaluated for use as an ara-C biosensor and an in vitro assay has been designed to predict ara-C response in clinical samples. Transposition mutagenesis was used to create a cytidine deaminase (cdd)-deficient mutant of E. coli MG1655 that responded to ara-C. The strain was transformed with the luxCDABE operon and used as a whole-cell biosensor for development an 8-h assay to determine ara-C uptake and phosphorylation by leukemic cells. Intracellular concentrations of 0.025 μmol/L phosphorylated ara-C were detected by significantly increased light output (P < 0.05) from the bacterial biosensor. Results using AML cell lines with known response to ara-C showed close correlation between the 8-h assay and a 3-day cytotoxicity test for ara-C cell killing. In retrospective tests with 24 clinical samples of bone marrow or peripheral blood, the biosensor-based assay predicted leukemic cell response to ara-C within 8 h. The biosensor-based assay may offer a predictor for evaluating the sensitivity of leukemic cells to ara-C before patients undergo chemotherapy and allow customized treatment of drug-sensitive patients with reduced ara-C dose levels. The 8-h assay monitors intracellular ara-CTP (cytosine arabinoside triphosphate) levels and, if fully validated, may be suitable for use in clinical settings.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 30%
Researcher 2 20%
Lecturer 1 10%
Student > Postgraduate 1 10%
Unknown 3 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 30%
Medicine and Dentistry 2 20%
Biochemistry, Genetics and Molecular Biology 1 10%
Unknown 4 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2014.
All research outputs
#15,305,567
of 22,763,032 outputs
Outputs from Advances in biochemical engineering biotechnology
#113
of 224 outputs
Outputs of similar age
#190,047
of 305,294 outputs
Outputs of similar age from Advances in biochemical engineering biotechnology
#8
of 13 outputs
Altmetric has tracked 22,763,032 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 224 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,294 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.