↓ Skip to main content

Phosphoinositide 3-kinase in Health and Disease

Overview of attention for book
Attention for Chapter 78: PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
wikipedia
1 Wikipedia page

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy
Chapter number 78
Book title
Phosphoinositide 3-kinase in Health and Disease
Published in
Current topics in microbiology and immunology, January 2010
DOI 10.1007/82_2010_78
Pubmed ID
Book ISBNs
978-3-64-213662-7, 978-3-64-213663-4
Authors

David J. Glass, Glass, David J.

Abstract

Activation of the PI3 kinase pathway can induce skeletal muscle hypertrophy, defined as an increase in skeletal muscle mass. In mammals, skeletal muscle hypertrophy occurs as a result of an increase in the size, as opposed to the number, of pre-existing skeletal muscle fibers. This pathway's effects on skeletal muscle have been implicated most prominently downstream of Insulin-like growth factor 1 signaling. IGF-1's pro-hypertrophy activity comes predominantly through its ability to activate the Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Akt is a serine-threonine protein kinase that can induce protein synthesis and block the transcriptional upregulation of key mediators of skeletal muscle atrophy, the E3 ubiquitin ligases MuRF1 and MAFbx (also called Atrogin-1), by phosphorylating and thereby inhibiting the nuclear translocation of the FOXO (also called "forkhead") family of transcription factors. Once phosphorylated by Akt, the FOXOs are excluded from the nucleus, and upregulation of MuRF1 and MAFbx is blocked. MuRF1 and MAFbx mediate atrophy by ubiquitinating particular protein substrates, causing them to undergo degradation by the proteasome. MuRF1's substrates include several components of the sarcomeric thick filament, including Myosin Heavy Chain (MyHC). Thus, by blocking MuRF1 activation, IGF-1 helps prevent the breakdown of the thick filament under atrophy conditions.IGF1/PI3K/Akt signaling also can dominantly inhibit the effects of a secreted protein called "myostatin," which is a member of the TGFβ family of proteins. Deletion or inhibition of myostatin causes an increase in skeletal muscle size, because myostatin acts both to inhibit myoblast differentiation and to block the Akt pathway. Thus by blocking myostatin, PI3K/Akt activation stimulates differentiation and protein synthesis by this distinct mechanism. Myostatin induces the phosphorylation and activation of the transcription factors of Smad2 and Smad3, downstream of the ActRII (Activin Receptor type II)/Alk (Activin Receptor-like kinase) receptor complex. Other TGFβ-like molecules can also block differentiation, including TGF-b1, GDF-11, activinA, BMP-2 and BMP-7. As mentioned, myostatin also downregulates the Akt/mTOR/p70S6 protein synthesis pathway, which mediates both differentiation in myoblasts and hypertrophy in myotubes. Blockade of the Akt/mTOR pathway, using siRNA to RAPTOR, a component of "TORC1" (TOR signaling Complex 1), increases myostatin-induced phosphorylation of Smad2; this establishes a "feed-forward mechanism," because myostatin can downregulates TORC1, and this downregulation in turn amplifies myostatin signaling. Blockade of RAPTOR also facilitates myostatin's inhibition of muscle differentiation. When added to post-differentiated myotubes, myostatin causes a decrease in their diameter - however, this does not happen through the normal "atrophy pathway." Rather than causing upregulation of the E3 ubiquitin ligases MuRF1 and MAFbx, previously shown to mediate skeletal muscle atrophy, myostatin decreases expression of these atrophy markers in differentiated myotubes, as well as other genes normally upregulated during differentiation, such as MyoD and myogenin. These findings show that myostatin signaling acts by blocking genes induced during differentiation, even in a myotube, as opposed to activating the distinct "atrophy program."

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
United States 1 1%
Italy 1 1%
Unknown 85 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 18%
Researcher 11 13%
Student > Master 11 13%
Student > Postgraduate 6 7%
Student > Bachelor 5 6%
Other 20 23%
Unknown 19 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 32%
Biochemistry, Genetics and Molecular Biology 21 24%
Medicine and Dentistry 9 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Nursing and Health Professions 2 2%
Other 5 6%
Unknown 21 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2023.
All research outputs
#2,938,111
of 24,272,486 outputs
Outputs from Current topics in microbiology and immunology
#75
of 694 outputs
Outputs of similar age
#15,085
of 171,097 outputs
Outputs of similar age from Current topics in microbiology and immunology
#3
of 13 outputs
Altmetric has tracked 24,272,486 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 694 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 171,097 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.