↓ Skip to main content

Wheat Biotechnology

Overview of attention for book
Cover of 'Wheat Biotechnology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Enabling Molecular Technologies for Trait Improvement in Wheat
  3. Altmetric Badge
    Chapter 2 What Will Be the Benefits of Biotech Wheat for European Agriculture?
  4. Altmetric Badge
    Chapter 3 Overview of the Wheat Genetic Transformation and Breeding Status in China
  5. Altmetric Badge
    Chapter 4 Wheat Improvement in India: Present and Future
  6. Altmetric Badge
    Chapter 5 Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines
  7. Altmetric Badge
    Chapter 6 Allergenicity Assessment of Transgenic Wheat Lines In Silico
  8. Altmetric Badge
    Chapter 7 Agribusiness Perspectives on Transgenic Wheat
  9. Altmetric Badge
    Chapter 8 Agrobacterium-Mediated Transformation of Wheat Using Immature Embryos
  10. Altmetric Badge
    Chapter 9 Biolistic Transformation of Wheat
  11. Altmetric Badge
    Chapter 10 Wheat Genetic Transformation Using Mature Embryos as Explants
  12. Altmetric Badge
    Chapter 11 Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems
  13. Altmetric Badge
    Chapter 12 Design and Assembly of CRISPR/Cas9 Reagents for Gene Knockout, Targeted Insertion, and Replacement in Wheat
  14. Altmetric Badge
    Chapter 13 Doubled Haploid Transgenic Wheat Lines by Microspore Transformation
  15. Altmetric Badge
    Chapter 14 Doubled Haploid Laboratory Protocol for Wheat Using Wheat–Maize Wide Hybridization
  16. Altmetric Badge
    Chapter 15 Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat
  17. Altmetric Badge
    Chapter 16 Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection
  18. Altmetric Badge
    Chapter 17 Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum
  19. Altmetric Badge
    Chapter 18 Databases for Wheat Genomics and Crop Improvement
  20. Altmetric Badge
    Chapter 19 High-Density SNP Genotyping Array for Hexaploid Wheat and Its Relatives
Attention for Chapter 19: High-Density SNP Genotyping Array for Hexaploid Wheat and Its Relatives
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
High-Density SNP Genotyping Array for Hexaploid Wheat and Its Relatives
Chapter number 19
Book title
Wheat Biotechnology
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7337-8_19
Pubmed ID
Book ISBNs
978-1-4939-7335-4, 978-1-4939-7337-8
Authors

Amanda J. Burridge, Mark O. Winfield, Alexandra M. Allen, Paul A. Wilkinson, Gary L. A. Barker, Jane Coghill, Christy Waterfall, Keith J. Edwards, Burridge, Amanda J., Winfield, Mark O., Allen, Alexandra M., Wilkinson, Paul A., Barker, Gary L. A., Coghill, Jane, Waterfall, Christy, Edwards, Keith J.

Abstract

A lack of genetic diversity between wheat breeding lines has been recognized as a significant block to future yield increases. Wheat breeding and prebreeding strategies are increasingly using material from wheat ancestors or wild relatives to reintroduce diversity. Where molecular markers are polymorphic between the host and introgressed material, they may be used to track the size and location of the introgressed material through generations of backcrossing. To generate markers for this purpose, sequence capture targeted resequencing was carried out for a range of wheat varieties, wheat relatives, and wheat progenitors. From these sequences, putative SNPs were identified and used to generate the Axiom® Wheat HD array. A selection of varieties representing a selection of elite wheat breeding material, progenitor species, and wild relatives were used to validate the array. The procedures used are described here in detail.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Student > Bachelor 2 14%
Student > Ph. D. Student 2 14%
Unknown 6 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 43%
Biochemistry, Genetics and Molecular Biology 1 7%
Engineering 1 7%
Unknown 6 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 May 2018.
All research outputs
#20,447,499
of 23,002,898 outputs
Outputs from Methods in molecular biology
#9,937
of 13,156 outputs
Outputs of similar age
#356,155
of 421,223 outputs
Outputs of similar age from Methods in molecular biology
#842
of 1,074 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,156 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.