↓ Skip to main content

Wheat Biotechnology

Overview of attention for book
Cover of 'Wheat Biotechnology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Enabling Molecular Technologies for Trait Improvement in Wheat
  3. Altmetric Badge
    Chapter 2 What Will Be the Benefits of Biotech Wheat for European Agriculture?
  4. Altmetric Badge
    Chapter 3 Overview of the Wheat Genetic Transformation and Breeding Status in China
  5. Altmetric Badge
    Chapter 4 Wheat Improvement in India: Present and Future
  6. Altmetric Badge
    Chapter 5 Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines
  7. Altmetric Badge
    Chapter 6 Allergenicity Assessment of Transgenic Wheat Lines In Silico
  8. Altmetric Badge
    Chapter 7 Agribusiness Perspectives on Transgenic Wheat
  9. Altmetric Badge
    Chapter 8 Agrobacterium-Mediated Transformation of Wheat Using Immature Embryos
  10. Altmetric Badge
    Chapter 9 Biolistic Transformation of Wheat
  11. Altmetric Badge
    Chapter 10 Wheat Genetic Transformation Using Mature Embryos as Explants
  12. Altmetric Badge
    Chapter 11 Targeted Mutagenesis in Hexaploid Bread Wheat Using the TALEN and CRISPR/Cas Systems
  13. Altmetric Badge
    Chapter 12 Design and Assembly of CRISPR/Cas9 Reagents for Gene Knockout, Targeted Insertion, and Replacement in Wheat
  14. Altmetric Badge
    Chapter 13 Doubled Haploid Transgenic Wheat Lines by Microspore Transformation
  15. Altmetric Badge
    Chapter 14 Doubled Haploid Laboratory Protocol for Wheat Using Wheat–Maize Wide Hybridization
  16. Altmetric Badge
    Chapter 15 Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat
  17. Altmetric Badge
    Chapter 16 Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection
  18. Altmetric Badge
    Chapter 17 Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum
  19. Altmetric Badge
    Chapter 18 Databases for Wheat Genomics and Crop Improvement
  20. Altmetric Badge
    Chapter 19 High-Density SNP Genotyping Array for Hexaploid Wheat and Its Relatives
Attention for Chapter 17: Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum
Chapter number 17
Book title
Wheat Biotechnology
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7337-8_17
Pubmed ID
Book ISBNs
978-1-4939-7335-4, 978-1-4939-7337-8
Authors

Jagdeep Kaur, Dilip Shah, John Fellers

Abstract

Leaf rust (LR) and Fusarium head blight (FHB) caused by Puccinia triticina and Fusarium graminearum, respectively, are among the most damaging fungal diseases challenging wheat production worldwide. Genetic resistance in combination with fungicide application has been the most widely employed approach to combat these fungal pathogens. Alternative approaches that could augment current practices are needed for the control of these devastating pathogens. To that end, we have recently shown that the extracellular expression of antifungal defensin MtDEF4.2 from Medicago truncatula confers resistance to LR. Additionally, we show that expression of this defensin also provides Type II resistance to FHB under controlled growth chamber conditions. These findings have practical applications for control of these important fungal diseases in wheat. Here, we provide details on conducting LR and FHB bioassays of transgenic wheat lines in the growth chamber.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 1 25%
Researcher 1 25%
Student > Doctoral Student 1 25%
Unknown 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 50%
Engineering 1 25%
Unknown 1 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2017.
All research outputs
#18,146,485
of 23,312,088 outputs
Outputs from Methods in molecular biology
#7,400
of 13,318 outputs
Outputs of similar age
#296,110
of 422,838 outputs
Outputs of similar age from Methods in molecular biology
#643
of 1,076 outputs
Altmetric has tracked 23,312,088 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,318 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,838 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,076 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.