↓ Skip to main content

Mitochondrial DNA

Overview of attention for book
Attention for Chapter: Animal Models for Mitochondrial Disease
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
79 Mendeley
citeulike
3 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Animal Models for Mitochondrial Disease
Book title
Mitochondrial DNA
Published in
Methods in molecular biology, January 2002
DOI 10.1385/1-59259-284-8:003
Pubmed ID
Book ISBNs
978-0-89603-972-8, 978-1-59259-284-5
Authors

Douglas C. Wallace, Wallace, Douglas C.

Abstract

Mutations in mitochondrial genes encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA have been implicated in a wide range of degenerative diseases. MtDNA base substitution and rearrangement mutations can cause myopathy, cardiomyopathy, ophthalmological defects, growth retardation, movement disorders, dementias, and diabetes. nDNA mutations can affect mtDNA replication and transcription, increase mtDNA mutations through defects in the adenine nucleotide translocator isoform 1 (ANT1), or cause Leigh's syndrome, as a result of defects in oxidative phosphorylation (OXPHOS) structural genes. Mouse models of mtDNA base substitution mutations have been created by introducing the mtDNA 16S rRNA chloramphenicol (CAP)-resistance mutation into the mouse female germline. This resulted in ophthalmological defects in chimeras and perinatal lethality resulting from myopathy and cardiomyopathy in mutant animals. Mouse models of mtDNA rearrangements have resulted in animals with myopathy, cardiomyopathy, and nephropathy. Conditional inactivation of the mouse nDNA mitochondrial transcription factor (Tfam) gene in the heart caused neonatal lethal cardiomyopathy, whereas its inactivation in the pancreatic beta-cells caused diabetes. Mutational inactivation of the mouse Ant1 gene resulted in myopathy, cardiomyopathy, and multiple mtDNA deletions in association with elevated reactive oxygen species (ROS) production. This suggests that multiple mtDNA deletion syndrome can be caused by increased ROS damage. The inactivation of the uncoupler protein genes (Ucp) 1-3 resulted in alterations in delta mu H+ and increased ROS production. Inactivation of the Ucp2 gene, which is expressed in the pancreatic beta-cells, resulted in increased islet ATP, increased serum insulin levels, and suppression of the diabetes of the ob/ob mouse genotype. Transgenic mice with altered beta-cell ATP-sensitive K+ channels (KATP) also developed diabetes. Mutational inactivation of the mitochondrial antioxidant genes for glutathione peroxidase (GPx1) and Mn superoxide dismutase (Sod2) caused reduced energy production and neonatal lethal dilated cardiomyopathy, respectively, the later being ameliorated by treatment with MnSOD mimics. Partial Sod2 deficiency (+/-) resulted in mice with increased mitochondrial damage during aging, and treatment of C. elegans with catalytic antioxidant drugs can extend their life-span. Mice deficient in cytochrome-c died early in embryogenesis, but cells derived from these embryos had a complete deficiency in mitochondrial apoptosis. Mice lacking the proapoptotic Bax and Bak genes were not able to release cytochrome-c from the mitochondrion and were blocked in apoptosis. Mice lacking Apaf1, Cas9, and Cas3 did release mitochondrial cytochrome-c and were blocked in the downstream steps of apoptosis. These animal studies confirm that alterations in mitochondrial energy generation, ROS production, and apoptosis can all contribute to the pathophysiology of mitochondrial disease.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 79 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 4%
Uruguay 1 1%
China 1 1%
Germany 1 1%
Unknown 73 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 23%
Student > Ph. D. Student 12 15%
Professor > Associate Professor 10 13%
Student > Bachelor 8 10%
Student > Master 7 9%
Other 13 16%
Unknown 11 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 39%
Biochemistry, Genetics and Molecular Biology 9 11%
Medicine and Dentistry 5 6%
Veterinary Science and Veterinary Medicine 3 4%
Engineering 3 4%
Other 16 20%
Unknown 12 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2014.
All research outputs
#20,233,066
of 22,758,963 outputs
Outputs from Methods in molecular biology
#9,865
of 13,089 outputs
Outputs of similar age
#120,508
of 122,797 outputs
Outputs of similar age from Methods in molecular biology
#7
of 8 outputs
Altmetric has tracked 22,758,963 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,089 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 122,797 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one.