↓ Skip to main content

Urothelial Carcinoma

Overview of attention for book
Cover of 'Urothelial Carcinoma'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Analysis of Chromosomal Alterations in Urothelial Carcinoma
  3. Altmetric Badge
    Chapter 2 Analysis of Point Mutations in Clinical Samples of Urothelial Carcinoma
  4. Altmetric Badge
    Chapter 3 A Versatile Assay for Detection of Aberrant DNA Methylation in Bladder Cancer.
  5. Altmetric Badge
    Chapter 4 Immunohistochemical Analysis of Urothelial Carcinoma Tissues for Proliferation and Differentiation Markers
  6. Altmetric Badge
    Chapter 5 Molecular Subtype Profiling of Urothelial Carcinoma Using a Subtype-Specific Immunohistochemistry Panel
  7. Altmetric Badge
    Chapter 6 Defining the Pathways of Urogenital Schistosomiasis-Associated Urothelial Carcinogenesis through Transgenic and Bladder Wall Egg Injection Models.
  8. Altmetric Badge
    Chapter 7 Algorithm for the Automated Evaluation of NAT2 Genotypes
  9. Altmetric Badge
    Chapter 8 Detection of APOBEC3 Proteins and Catalytic Activity in Urothelial Carcinoma
  10. Altmetric Badge
    Chapter 9 Oxidative Stress in Urothelial Carcinogenesis: Measurements of Protein Carbonylation and Intracellular Production of Reactive Oxygen Species
  11. Altmetric Badge
    Chapter 10 Urothelial Carcinoma Stem Cells: Current Concepts, Controversies, and Methods.
  12. Altmetric Badge
    Chapter 11 In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines.
  13. Altmetric Badge
    Chapter 12 Spheroid Cultures of Primary Urothelial Cancer Cells: Cancer Tissue-Originated Spheroid (CTOS) Method
  14. Altmetric Badge
    Chapter 13 The N-butyl-N-4-hydroxybutyl Nitrosamine Mouse Urinary Bladder Cancer Model.
  15. Altmetric Badge
    Chapter 14 Patient-Derived Bladder Cancer Xenografts
  16. Altmetric Badge
    Chapter 15 Orthotopic Mouse Models of Urothelial Cancer
  17. Altmetric Badge
    Chapter 16 Quantification of MicroRNAs in Urine-Derived Specimens.
  18. Altmetric Badge
    Chapter 17 Quantitative RNA Analysis from Urine Using Real Time PCR
  19. Altmetric Badge
    Chapter 18 DNA Methylation Analysis from Body Fluids.
  20. Altmetric Badge
    Chapter 19 Urinary Protein Markers for the Detection and Prognostication of Urothelial Carcinoma
  21. Altmetric Badge
    Chapter 20 Isolation and Characterization of CTCs from Patients with Cancer of a Urothelial Origin
  22. Altmetric Badge
    Chapter 21 Epigenetic Treatment Options in Urothelial Carcinoma.
  23. Altmetric Badge
    Chapter 22 Evaluation of Protein Levels of the Receptor Tyrosine Kinase ErbB3 in Serum
  24. Altmetric Badge
    Chapter 23 Targeting the PI3K/AKT/mTOR Pathway in Bladder Cancer
  25. Altmetric Badge
    Chapter 24 Visualization and Quantitative Measurement of Drug-Induced Platinum Adducts in the Nuclear DNA of Individual Cells by an Immuno-Cytological Assay
  26. Altmetric Badge
    Chapter 25 Erratum to: Urinary Protein Markers for the Detection and Prognostication of Urothelial Carcinoma
Attention for Chapter 3: A Versatile Assay for Detection of Aberrant DNA Methylation in Bladder Cancer.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Versatile Assay for Detection of Aberrant DNA Methylation in Bladder Cancer.
Chapter number 3
Book title
Urothelial Carcinoma
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7234-0_3
Pubmed ID
Book ISBNs
978-1-4939-7233-3, 978-1-4939-7234-0
Authors

Tommasi, Stella, Besaratinia, Ahmad, Stella Tommasi, Ahmad Besaratinia

Abstract

Urothelial carcinoma of the bladder is one of the most common malignancies in the industrialized world, mainly caused by smoking and occupational exposure to chemicals. The favorable prognosis of early stage bladder cancer underscores the importance of early detection for the treatment of this disease. The high recurrence rate of this malignancy also highlights the need for close post-diagnosis monitoring of bladder cancer patients. As for other malignancies, aberrant DNA methylation has been shown to play a crucial role in the initiation and progression of bladder cancer, and thus holds great promise as a diagnostic and prognostic biological marker. Here, we describe a protocol for a versatile DNA methylation enrichment method, the Methylated CpG Island Recovery Assay (MIRA), which enables analysis of the DNA methylation status in individual genes or across the entire genome. MIRA is based on the ability of the methyl-binding domain (MBD) proteins, the MBD2B/MBD3L1 complex, to specifically bind methylated CpG dinucleotides. This easy-to-perform method can be used to analyze the methylome of bladder cancer or urothelial cells shed in the urine to elucidate the evolution of bladder carcinogenesis and/or identify epigenetic signatures of chemicals known to cause this malignancy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 23%
Student > Master 2 15%
Student > Ph. D. Student 2 15%
Student > Postgraduate 2 15%
Researcher 1 8%
Other 1 8%
Unknown 2 15%
Readers by discipline Count As %
Medicine and Dentistry 4 31%
Biochemistry, Genetics and Molecular Biology 3 23%
Nursing and Health Professions 1 8%
Agricultural and Biological Sciences 1 8%
Materials Science 1 8%
Other 0 0%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2017.
All research outputs
#20,446,373
of 23,001,641 outputs
Outputs from Methods in molecular biology
#9,937
of 13,154 outputs
Outputs of similar age
#378,065
of 442,237 outputs
Outputs of similar age from Methods in molecular biology
#1,193
of 1,498 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,154 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,237 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.