↓ Skip to main content

Electromechanobiology of Cartilage and Osteoarthritis

Overview of attention for book
Attention for Chapter: Gene Delivery to Chondrocytes.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Gene Delivery to Chondrocytes.
Book title
Electromechanobiology of Cartilage and Osteoarthritis
Published in
Advances in experimental medicine and biology, April 2023
DOI 10.1007/978-3-031-25588-5_7
Pubmed ID
Book ISBNs
978-3-03-125587-8, 978-3-03-125588-5
Authors

Nagelli, Christopher V, Evans, Christopher H, De la Vega, Rodolfo E, Nagelli, Christopher V., Evans, Christopher H., De la Vega, Rodolfo E.

Abstract

Delivering genes to chondrocytes offers new possibilities both clinically, for treating conditions that affect cartilage, and in the laboratory, for studying the biology of chondrocytes. Advances in gene therapy have created a number of different viral and non-viral vectors for this purpose. These vectors may be deployed in an ex vivo fashion, where chondrocytes are genetically modified outside the body, or by in vivo delivery where the vector is introduced directly into the body; in the case of articular and meniscal cartilage in vivo delivery is typically by intra-articular injection. Ex vivo delivery is favored in strategies for enhancing cartilage repair as these can be piggy-backed on existing cell-based technologies, such as autologous chondrocyte implantation, or used in conjunction with marrow-stimulating techniques such as microfracture. In vivo delivery to articular chondrocytes has proved more difficult, because the dense, anionic, extra-cellular matrix of cartilage limits access to the chondrocytes embedded within it. As Grodzinsky and colleagues have shown, the matrix imposes strict limits on the size and charge of particles able to diffuse through the entire depth of articular cartilage. Empirical observations suggest that the larger viral vectors, such as adenovirus (~100 nm), are unable to transduce chondrocytes in situ following intra-articular injection. However, adeno-associated virus (AAV; ~25 nm) is able to do so in horse joints. AAV is presently in clinical trials for arthritis gene therapy, and it will be interesting to see whether human chondrocytes are also transduced throughout the depth of cartilage by AAV following a single intra-articular injection. Viral vectors have been used to deliver genes to the intervertebral disk but there has been little research on gene transfer to chondrocytes in other cartilaginous tissues such as nasal, auricular or tracheal cartilage.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 13%
Student > Postgraduate 1 13%
Unknown 6 75%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 25%
Unknown 6 75%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2023.
All research outputs
#14,316,242
of 24,066,486 outputs
Outputs from Advances in experimental medicine and biology
#2,000
of 5,116 outputs
Outputs of similar age
#175,279
of 397,513 outputs
Outputs of similar age from Advances in experimental medicine and biology
#3
of 34 outputs
Altmetric has tracked 24,066,486 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,116 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 397,513 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.