↓ Skip to main content

Computational Protein Design

Overview of attention for book
Cover of 'Computational Protein Design'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Framework of Computational Protein Design.
  3. Altmetric Badge
    Chapter 2 Achievements and Challenges in Computational Protein Design.
  4. Altmetric Badge
    Chapter 3 Production of Computationally Designed Small Soluble- and Membrane-Proteins: Cloning, Expression, and Purification.
  5. Altmetric Badge
    Chapter 4 Deterministic Search Methods for Computational Protein Design.
  6. Altmetric Badge
    Chapter 5 Geometric Potentials for Computational Protein Sequence Design.
  7. Altmetric Badge
    Chapter 6 Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
  8. Altmetric Badge
    Chapter 7 Multistate Computational Protein Design with Backbone Ensembles.
  9. Altmetric Badge
    Chapter 8 Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.
  10. Altmetric Badge
    Chapter 9 Applications of Normal Mode Analysis Methods in Computational Protein Design.
  11. Altmetric Badge
    Chapter 10 Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function.
  12. Altmetric Badge
    Chapter 11 Computational Protein Design Through Grafting and Stabilization.
  13. Altmetric Badge
    Chapter 12 An Evolution-Based Approach to De Novo Protein Design.
  14. Altmetric Badge
    Chapter 13 Parallel Computational Protein Design.
  15. Altmetric Badge
    Chapter 14 Computational Protein Design
  16. Altmetric Badge
    Chapter 15 OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
  17. Altmetric Badge
    Chapter 16 Evolution-Inspired Computational Design of Symmetric Proteins.
  18. Altmetric Badge
    Chapter 17 A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids.
  19. Altmetric Badge
    Chapter 18 Probing Oligomerized Conformations of Defensin in the Membrane.
  20. Altmetric Badge
    Chapter 19 Computational Design of Ligand Binding Proteins.
  21. Altmetric Badge
    Chapter 20 EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.
  22. Altmetric Badge
    Chapter 21 Computational Tools for Aiding Rational Antibody Design.
  23. Altmetric Badge
    Chapter 22 Computational Design of Membrane Curvature-Sensing Peptides.
  24. Altmetric Badge
    Chapter 23 Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design.
Attention for Chapter 17: A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids.
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids.
Chapter number 17
Book title
Computational Protein Design
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6637-0_17
Pubmed ID
Book ISBNs
978-1-4939-6635-6, 978-1-4939-6637-0
Authors

Nurit Haspel, Jie Zheng, Carlos Aleman, David Zanuy, Ruth Nussinov

Editors

Ilan Samish

Abstract

In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 17%
Professor 2 11%
Student > Master 2 11%
Student > Ph. D. Student 2 11%
Librarian 1 6%
Other 0 0%
Unknown 8 44%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 17%
Biochemistry, Genetics and Molecular Biology 2 11%
Chemistry 2 11%
Linguistics 1 6%
Psychology 1 6%
Other 1 6%
Unknown 8 44%