↓ Skip to main content

Epstein Barr Virus

Overview of attention for book
Cover of 'Epstein Barr Virus'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Current Trends and Alternative Scenarios in EBV Research.
  3. Altmetric Badge
    Chapter 2 Epstein-Barr Virus: Clinical Diagnostics.
  4. Altmetric Badge
    Chapter 3 Establishment of EBV-Infected Lymphoblastoid Cell Lines.
  5. Altmetric Badge
    Chapter 4 Generation and Infection of Organotypic Cultures with Epstein-Barr Virus.
  6. Altmetric Badge
    Chapter 5 Affinity Purification-Mass Spectroscopy Methods for Identifying Epstein-Barr Virus-Host Interactions.
  7. Altmetric Badge
    Chapter 6 The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.
  8. Altmetric Badge
    Chapter 7 Analysis of EBV Transcription Using High-Throughput RNA Sequencing.
  9. Altmetric Badge
    Chapter 8 Analysis of Viral Promoter Usage in EBV-Infected Cell Lines: A Comparison of qPCR Following Conventional RNA Isolation and Nuclear Run-On Assay.
  10. Altmetric Badge
    Chapter 9 Analysis of Viral and Cellular MicroRNAs in EBV-Infected Cells.
  11. Altmetric Badge
    Chapter 10 Isolation and Characterization of Exosomes Released by EBV-Immortalized Cells.
  12. Altmetric Badge
    Chapter 11 Functional Analysis of Exosomes Derived from EBV-Infected Cells.
  13. Altmetric Badge
    Chapter 12 Terminal Repeat Analysis of EBV Genomes.
  14. Altmetric Badge
    Chapter 13 Characterization of EBV Promoters and Coding Regions by Sequencing PCR-Amplified DNA Fragments.
  15. Altmetric Badge
    Chapter 14 The Use of Chromatin Precipitation Coupled to DNA Sequencing (ChIP-Seq) for the Analysis of Zta Binding to the Human and EBV Genome.
  16. Altmetric Badge
    Chapter 15 Analysis of Viral Epigenotypes Using Bisulfite Sequencing: A Detailed Protocol for the Crucial Bisulfite Modification and PCR Amplification Steps.
  17. Altmetric Badge
    Chapter 16 Analysis of Viral Epigenotypes Using Chromatin Immunoprecipitation.
  18. Altmetric Badge
    Chapter 17 Mice with Reconstituted Human Immune System Components as a Tool to Study Immune Cell Interactions in EBV Infection.
  19. Altmetric Badge
    Chapter 18 Generation and Analysis of Humanized Mouse Model of EBV Infection.
  20. Altmetric Badge
    Chapter 19 EBV-Directed T Cell Therapeutics for EBV-Associated Lymphomas.
Attention for Chapter 2: Epstein-Barr Virus: Clinical Diagnostics.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Epstein-Barr Virus: Clinical Diagnostics.
Chapter number 2
Book title
Epstein Barr Virus
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6655-4_2
Pubmed ID
Book ISBNs
978-1-4939-6653-0, 978-1-4939-6655-4
Authors

Hans-Helmut Niller, Georg Bauer, Niller, Hans-Helmut, Bauer, Georg

Editors

Janos Minarovits, Hans Helmut Niller

Abstract

The vast majority of the human adult population is infected with Epstein-Barr virus (EBV), and the majority of the EBV-infected individuals tolerates the infection well, without any further symptoms after primary infection. In cases of individuals which undergo primary infection in the form of an infectious mononucleosis, or which have undergone primary infection in their past, it is sometimes important to appraise symptomatic disease or differentiate infectious mononucleosis from other conditions. In these cases, serological methods, i.e., immunofluorescence, ELISA, or Western blot, are the methods of choice to come to an unequivocal diagnostic conclusion, while the detection and quantification of viral DNA through PCR plays a minor role.On the other hand, in a minority of the human population, EBV infection is associated or causally linked with autoimmune or malignant disease. Especially in the bone marrow or solid organ transplanted, or in otherwise severely immune-suppressed patients, prolonged EBV primary infection or EBV reactivation from latency may be a serious and life-threatening complication which needs to be diagnosed the faster the better, in order to take therapeutic steps in time. Determining the serostatus correctly is also important in these cases. However, the direct and quantitative detection of viral DNA are of importance for the diagnosis of serious EBV disease and its monitoring.In the following, we give an overview of diagnostic methods to accurately determine EBV serostatus and viral load. We evaluate the advantages and disadvantages of each method and report on the diagnostic significance of each and how to resolve diagnostic problems in case of uncertainties. For practical procedures, we refer to the detailed instruction manuals of the respective test kit manufacturers which have to be closely followed for reliable results.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 20%
Student > Doctoral Student 7 11%
Other 5 8%
Student > Master 5 8%
Student > Postgraduate 4 7%
Other 10 16%
Unknown 18 30%
Readers by discipline Count As %
Medicine and Dentistry 15 25%
Biochemistry, Genetics and Molecular Biology 9 15%
Agricultural and Biological Sciences 4 7%
Nursing and Health Professions 3 5%
Immunology and Microbiology 3 5%
Other 7 11%
Unknown 20 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2018.
All research outputs
#20,355,479
of 22,903,988 outputs
Outputs from Methods in molecular biology
#9,922
of 13,133 outputs
Outputs of similar age
#355,337
of 420,462 outputs
Outputs of similar age from Methods in molecular biology
#845
of 1,074 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,133 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,462 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.