↓ Skip to main content

Epigenetics: Development and Disease

Overview of attention for book
Cover of 'Epigenetics: Development and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Chromatin Organization, Epigenetics and Differentiation: An Evolutionary Perspective
  3. Altmetric Badge
    Chapter 2 Secondary Structures of the Core Histone N-terminal Tails: Their Role in Regulating Chromatin Structure
  4. Altmetric Badge
    Chapter 3 Megabase Replication Domains Along the Human Genome: Relation to Chromatin Structure and Genome Organisation
  5. Altmetric Badge
    Chapter 4 Role of DNA methyltransferases in epigenetic regulation in bacteria.
  6. Altmetric Badge
    Chapter 5 Metabolic Aspects of Epigenome: Coupling of S-Adenosylmethionine Synthesis and Gene Regulation on Chromatin by SAMIT Module
  7. Altmetric Badge
    Chapter 6 Epigenetic Regulation of Male Germ Cell Differentiation
  8. Altmetric Badge
    Chapter 7 Epigenetic Regulation of Skeletal Muscle Development and Differentiation.
  9. Altmetric Badge
    Chapter 8 Small changes, big effects: chromatin goes aging.
  10. Altmetric Badge
    Chapter 9 Homeotic Gene Regulation: A Paradigm for Epigenetic Mechanisms Underlying Organismal Development
  11. Altmetric Badge
    Chapter 10 Basic Mechanisms in RNA Polymerase I Transcription of the Ribosomal RNA Genes
  12. Altmetric Badge
    Chapter 11 The RNA Polymerase II Transcriptional Machinery and Its Epigenetic Context
  13. Altmetric Badge
    Chapter 12 RNA Polymerase III Transcription – Regulated by Chromatin Structure and Regulator of Nuclear Chromatin Organization
  14. Altmetric Badge
    Chapter 13 The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans
  15. Altmetric Badge
    Chapter 14 Histone Variants and Transcription Regulation
  16. Altmetric Badge
    Chapter 15 Noncoding RNAs in Chromatin Organization and Transcription Regulation: An Epigenetic View.
  17. Altmetric Badge
    Chapter 16 Chromatin Structure and Organization: The Relation with Gene Expression During Development and Disease
  18. Altmetric Badge
    Chapter 17 Cancer: An Epigenetic Landscape
  19. Altmetric Badge
    Chapter 18 Epigenetic regulation of cancer stem cell gene expression.
  20. Altmetric Badge
    Chapter 19 Role of Epigenetic Mechanisms in the Vascular Complications of Diabetes
  21. Altmetric Badge
    Chapter 20 Epigenetic changes in inflammatory and autoimmune diseases.
  22. Altmetric Badge
    Chapter 21 Epigenetic Regulation of HIV-1 Persistence and Evolving Strategies for Virus Eradication
  23. Altmetric Badge
    Chapter 22 Epigenetics in Parkinson's and Alzheimer's diseases.
  24. Altmetric Badge
    Chapter 23 Cellular Redox, Epigenetics and Diseases
  25. Altmetric Badge
    Chapter 24 Stem Cell Plasticity in Development and Cancer: Epigenetic Origin of Cancer Stem Cells
  26. Altmetric Badge
    Chapter 25 Histone Acetylation as a Therapeutic Target
  27. Altmetric Badge
    Chapter 26 DNA methylation and cancer.
  28. Altmetric Badge
    Chapter 27 Role of Epigenetics in Inflammation-Associated Diseases
  29. Altmetric Badge
    Chapter 28 Plasmodium falciparum: Epigenetic Control of var Gene Regulation and Disease.
Attention for Chapter 26: DNA methylation and cancer.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
458 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
DNA methylation and cancer.
Chapter number 26
Book title
Epigenetics: Development and Disease
Published in
Sub cellular biochemistry, June 2012
DOI 10.1007/978-94-007-4525-4_26
Pubmed ID
Book ISBNs
978-9-40-074524-7, 978-9-40-074525-4
Authors

Gokul G, Khosla S, Gopinathan Gokul, Sanjeev Khosla

Editors

Tapas K. Kundu

Abstract

Cancer has been considered a genetic disease with a wide array of well-characterized gene mutations and chromosomal abnormalities. Of late, aberrant epigenetic modifications have been elucidated in cancer, and together with genetic alterations, they have been helpful in understanding the complex traits observed in neoplasia. "Cancer Epigenetics" therefore has contributed substantially towards understanding the complexity and diversity of various cancers. However, the positioning of epigenetic events during cancer progression is still not clear, though there are some reports implicating aberrant epigenetic modifications in very early stages of cancer. Amongst the most studied aberrant epigenetic modifications are the DNA methylation differences at the promoter regions of genes affecting their expression. Hypomethylation mediated increased expression of oncogenes and hypermethylation mediated silencing of tumor suppressor genes are well known examples. This chapter also explores the correlation of DNA methylation and demethylation enzymes with cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 458 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 8 2%
Germany 4 <1%
United Kingdom 3 <1%
Belgium 2 <1%
Canada 2 <1%
South Africa 1 <1%
India 1 <1%
Japan 1 <1%
Brazil 1 <1%
Other 0 0%
Unknown 435 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 104 23%
Researcher 76 17%
Student > Master 54 12%
Student > Bachelor 39 9%
Professor > Associate Professor 31 7%
Other 78 17%
Unknown 76 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 133 29%
Biochemistry, Genetics and Molecular Biology 101 22%
Medicine and Dentistry 71 16%
Chemistry 14 3%
Computer Science 10 2%
Other 46 10%
Unknown 83 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 November 2012.
All research outputs
#18,320,524
of 22,685,926 outputs
Outputs from Sub cellular biochemistry
#232
of 350 outputs
Outputs of similar age
#126,451
of 164,449 outputs
Outputs of similar age from Sub cellular biochemistry
#11
of 19 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 350 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 164,449 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.